
A Context-Aware Reflective Middleware Framework for
Adaptive Real-time Vehicle Applications

Shengpu Liu
Lehigh University

19 Memorial Drive West
Bethlehem PA 18015

610-758-4801

shl204@lehigh.edu

Liang Cheng
Lehigh University

19 Memorial Drive West
Bethlehem PA 18015

610-758-4801

lica@lehigh.edu

ABSTRACT
Software has become crucial to develop vehicle systems. Future
unmanned intelligent vehicle safety systems will increasingly rely
on situational contexts collected at runtime through temporally
built ad-hoc and dynamic networks for vehicle-to-vehicle and
vehicle-to-roadside communications and dynamic adaptation to
the contexts to improve vehicle safety and reduce traffic
congestion. Context-aware reflective middleware, which can
measure real-time contexts and accordingly reconfigure the
behavior of supported applications, is an important technique to
enhance the affordability, flexibility, and adaptability of the
future vehicle safety systems. However, the long reconfiguration
time of existing context-aware reflective middleware cannot
satisfy the stringent real-time requirement of the vehicle systems
and thus limits its adoption.
In this paper, we present MARCHES, a context-aware reflective
middleware framework, which improves the reconfiguration
efficiency for engineering adaptive real-time vehicle applications
in dynamic environments. Different from traditional single
component-chain based middleware, MARCHES supports an
original structure of multiple component chains to reduce local
behavior change time. Further, according to the new structure, a
novel synchronization protocol using active messages is proposed
to reduce distributed behavior synchronization time. Experimental
results show that the reconfiguration time of MARCHES is
reduced from seconds (s) to hundreds of microseconds (μs).
Evaluations demonstrate that MARCHES is also robust and
scalable and generates small memory footprint, which makes it
suitable for supporting real-time vehicle applications.

Keywords
Reflective middleware; vehicle applications; real-time adaptation.

1. INTRODUCTION
Vehicles have been one of the most important tools in modern life
to provide us transportation and convenience and even evaluate
the productivity of a country. According to a 2006 DOT study,
there were about 250 million registered passenger vehicles on the
road in US, and approximately 16 million new vehicles are sold
every year [7]. On the other side, the abundance of vehicles leads
not only to congestion and energy waste but also to serious traffic
accidents. On an average, there are more than 6 million car
accidents on the roads of the US annually. More than 3 million
people get injured due to car accidents, with more than 2 million
of these injuries being permanent and more than 40 thousand
deaths every year [8].

To improve the vehicle safety and efficiency, researchers have
developed many electronic and digital assistant systems in this
area, like the OnStar telematics system, Google Earth, and
Microsoft’s Windows Live Local [9]. These systems can provide
helpful information to automotive drivers and assist them to make
correct decisions. However, they still require the participation of
human, and most of the provided information is static or delayed,
and thus they are lack of the autonomy to emergent accidents,
which are the major cause for people injury.

Recent advances in wireless technologies, like IEEE 802.11 and
Dedicated Short Range Communication (DSRC), smart sensing,
and control systems have led to the flourish of intelligent vehicle
safety applications, which are designed to create autonomous,
self-organizing, and mobile wireless ad-hoc networks connecting
vehicles and roadside infrastructure with each other and integrate
these networks with vehicle-control systems, like automatic
engine, transmission, and braking systems for context gathering
and avoidance of dangerous scenarios. These Vehicle Safety
Communication (VSC) techniques help share situational contexts,
like the actions of nearby vehicles and the situations of road-side
infrastructure based on vehicle-to-vehicle and vehicle-to-roadside
communication. Along with the development of VSC techniques,
a lot of vehicle safety applications are also proposed to provide
the real-time contextual information to drivers and warn them in
critical situations or autonomously react to such situations to
avoid accidents through on-board equipments.

As the VSC technologies and VSC supported vehicle safety
applications are still being developed worldwide, certain
particular challenges that obstruct or delay their further advances
in this radically new realm also emerge. The first challenge is
affordability. Although there are many VSC projects have been
initialized, like the VII [1] and CICAS [2] in US, AHS [3] and
DSSS [4] in Japan, and C2CCC [5] and PReVENT [6] in Europe,
most of them have their individual communication standards and
supported safety applications built entirely from scratch, which
makes their development costs very high. The second challenge is
flexibility. Existing multi-faceted and widely explored VSC
projects lack flexible capable of supporting different
communication protocols and new technical standards, e.g. VII
uses DSRC as its communication standard while C2CCC only
supports IEEE 802.11, which makes it difficult to communicate
between a car installed with DSRC equipments and a car installed
with C2CCC equipments. The monolithic application structure
also increases the application update cost. The third challenge is
adaptability. The communication between vehicles or vehicle and
roadside will be more complex and with higher overload in future,

for example, PReVENT plans to support 2D/3D image capture
and transmission, which can help drivers or intelligent vehicles
share visions for action replan. On the other hand, the temporally
constructed ad-hoc networks among vehicles and roadside
infrastructure are volatile, while existing VSC techniques are lack
of adaptability to the changing contexts at runtime, which affects
the communication robustness and required QoS, like latency,
jitter, and security etc., due to the high speed of vehicles. We
argue that all these challenges have prevented vehicle safety
applications from fully taking advantages of flourishing VSC
techniques and then motivate to introduce an important software
technique, context-aware reflective middleware, to solve these
challenges and support future intelligent vehicle applications.

Context-aware reflective middleware techniques are favorable for
vehicle applications for the following reasons. First, middleware,
as gluing software between applications and underlying operating
systems and networks, can abstract low-level implementation
details and heterogeneity and then facilitate the implementation of
complex vehicle applications so that developers can pay more
attention to the application logic and architecture design. Second,
reflective middleware uses component-based metamodel to
enables reusable service components to be organized, configured,
and deployed to develop vehicle applications, which consists of a
component chain or a functional path, efficiently and robustly.
(For example, the minimal meaningful vehicle safety application
consists of a communication component and a warming or control
component). Therefore, it can reduce the cost and complexity of
software upgrades by incorporating new technique and protocol
components and improve application flexibility. Third, context-
aware reflective middleware can automatically measure and
evaluate real-time situational contexts, e.g. the network
conditions, hardware resources and application QoS, and
dynamically reconfigure the application behaviors to adapt to the
changing contexts at runtime. Therefore, it improves the
adaptability and communication robustness of vehicle
applications.

To better clarify the motivations and potential advantages behind
the context-aware reflective middleware for vehicle systems, we
present an example of possible use case (see Fig. 1). Suppose a
road has two lanes in one direction, on which car 1 and car 5 are
on the lane 1 and car 2, 3, 4, and 6 are on the lane 2. There are
two scenarios that a vehicle system may need to adapt its
behaviors to real-time contexts.

The first scenario is for robust communication. Car 1 and car 2
share their visions by exchanging image data for action replan
when they drive closely while both only have partial vision of the
road condition. Each image frame is separated into tiles and
transmitted in a sequence based on different priorities. The tiles
closer to the interest point have higher priority and will be
transmitted first with high image quality. However, the network
condition, e.g. the bandwidth, between car 1 and car 2 is dynamic
and volatile. The middleware can automatically measure the
bandwidth and adaptively reconfigure the compression behaviors
at runtime, e.g. using or not using compression component, or
setting varied compression ratio, to satisfy the required QoS, like
the specified transmission time, in the application while provide
images as clear as possible.

The second scenario is for action replan. Car 4 finds that it is too
congested to drive on lane 2 while there are much less number of

cars on lane 1 through the
communication with
nearby cars and roadside
infrastructure. It then needs
to switch to lane 1 to
reduce traffic congestion.
The middleware in this
scenario will automatically
collect the position and
speed information of
neighbor cars and the road
conditions and then make
the decision of switching to
lane 2 by adjusting the
direction and speed
parameters of its software
control components.

When we applied existing
context-aware reflective
middleware techniques to
vehicle safety applications
in our experiments, we
found that the existing
techniques could not satisfy the stringent real-time requirements
of vehicle applications, in which a minor delay may result in
critical accidents and loss of lives and properties, due to their long
reconfiguration time. This is resulted by the inefficiency of their
synchronization protocols. Synchronization is a critical process
for reconfiguring a networked vehicle system that consists of
multiple programs distributed on different vehicles. Because each
program has its own behaviors and local architecture, it is
important to coordinate the reconfigured behaviors to achieve
global behavior consistency. For example, changing or adding an
image compression component in a local program may require a
corresponding change or insertion of the decompression
component in receiver programs in the scenario 1 of above
example; reconfiguring the direction or speed of a vehicle
requires corresponding action changes of other related vehicles to
avoid collision in the scenario 2. Synchronization protocols are
proposed to address the coordination problem so that a local
program can dynamically synchronize its behaviors at runtime to
the changed behaviors of other distributed programs without any
prior knowledge. However, the synchronization process of
existing context-aware reflective middleware is synchronous that
requires the synchronization participants to be blocked until the
reconfiguration process is completed. As a result, the
reconfiguration time is normally in a range of seconds or even
tens of seconds and affected by the network conditions and the
availability of other synchronization participants. The long
reconfiguration time limits the adoption of context-aware
reflective middleware by vehicle systems.

In this paper, we propose MARCHES (Middleware for Adaptive
Robust Collaborations across Heterogeneous Environments and
Systems), a context-aware reflective middleware framework, to
solve the critical issue of the reconfiguration time and to engineer
time-critical vehicle systems in dynamic environments. Compared
to the traditional middleware that supports the single component-
chain (Fig. 2a) based application architecture, MARCHES
maintains multiple component chains (Fig. 2b). Therefore, there is
a new method proposed for the behavior reconfiguration that

2

3

4

5 6

line1 line2

1

Figure 1. An example of vehicle
application scenario supported
by the context-aware reflective
middleware.

switches active and inactive chains. This new method replaces the
traditional method of modifying the single-chain structure to
reduce the local behavior change time. Further, according to this
method, an efficient active-message based synchronization
protocol is proposed for asynchronously coordinating the
behaviors of distributed programs. The key idea of the protocol is
that each application-layer data packet takes an active-message
header that indexes the correct component chain of the packet
receiver to process the data payload. Therefore, the distributed
behavior synchronization time is also dramatically reduced by
eliminating the operation suspension time and buffer clearance
time. The robustness of the distributed application is improved
since the use of active messages results in no synchronous
communication and system halting in the synchronization
process. The costs introduced by this improvement, such as extra
resource consumption and active-message overhead, are
extremely low comparing to capacity of the various computing
platforms, including mobile devices that are used as vehicle GPS
devices, as validated by our experiments.

1.1 Terminologies
The following terminologies will be used in this paper:

 Synchronization is the process of coordinating the
behaviors of collaborative programs in a distributed
application. When the behavior of a local program is
reconfigured to adapt to changing contexts, it requires its
peer programs to change their behaviors correspondingly
for system consistency.

 Synchronous synchronization means the synchronization
is realized through a synchronous method that requires all
synchronization participants to complete changing their
behaviors at the same time and suspend their application-
layer operations in this process.

 Asynchronous synchronization means the synchronization
is realized through an asynchronous method, in which the
local program can resume its operation right after its own
behavior is changed for adaptation and other
synchronization participants reactively change their
behaviors only when they communicate with this local
program.

 Sensor is the hierarchical context events that can measure
and evaluate specified contexts at runtime and notify
subscribed actuators for adaptation.

 Actuator is a reflective component that contains a set of
functional components to form a functional path or
component chain, which process application-layer data,
and a meta-interface, which can represent its internal
states and reconfigure the component properties or chain
structure of the actuator at runtime.

 Active actuator means the actuator status is active. There
is one and only one actuator active at any time and only
the component chain in the active actuator processes
application-layer data. Various actuators can be activated
or deactivated to adapt to changing context according to
user-defined policies.

 Proactive actuator is constructed at the system
initialization phase to process local data and proactively
change its behaviors to adapt to changing contexts at
runtime according to user-defined adaptation rules.

 Reactive actuator is constructed at the system
synchronization phase to process received data from peer
programs and reactively change its behaviors according to
the active message header of the received data packet.

This rest of the paper is organized as follows. Section 2 covers the
related work. Section 3 describes the details of the MARCHES
architecture. In Section 4, we have implemented and validated
MARCHES in our experiments. Finally, we conclude this paper
and present some future work in Section 5.

2. Related Work
2.1 Advances and Applications in Vehicular
Ad Hoc Networks
The research and development of vehicle safety communication
(VSC) techniques and their supported vehicle applications are
becoming more and more popular worldwide for their advantages
to collision/violation warning and avoidance in vehicle systems.
In US, the Vehicle Infrastructure Integration (VII) [1] project,
which aims to create a nationwide enabling communication
infrastructure by connecting vehicles and roadside infrastructures,
has been initiated by the US Department of Transportation (DOT)
and supported by many state DOTs and auto companies. VII
contains three major function modules. On-board equipments are
used to collect situational contexts, like the information of local
and nearby vehicles, and provide driver interfaces; Road-side
equipments can communicate with on-board equipments to
exchange information based on DSRC protocols; and regional
message switches send the information to remote end users that
can process the data and send back control commands. The
research and development of VII focuses on the research of
DSRC standards, like IEEE 1609- 1, 2, 3, and 4, and development
of vehicle and roadside equipments and applications, like signal
violation warning and stop sign violation warning etc.

In Japan, the National Police Agency is promoting the Next
Generation Universal Traffic Management Systems (UTMS21)
[4], which aim to create an environment-friendly and traffic-
oriented society to smooth traffic flow and avoid traffic accident.

One Chain
21

Modified Chain
21 3

Architecture 1 Architecture 2

(a)

21

21 3

Active Chain i

Inactive Chain j

21

21 3

Inactive Chain i

Active Chain j

Architecture 1 Architecture 2
(b)

Figure 2. Dynamic reconfiguration architecture: (a) single
component-chain architecture in existing middleware, (b)
multiple-component-chain architecture in MARCHES.

It integrates eight subsystems for vehicle context gathering and
management, intelligent vehicle control, responsibility to
emergent situations. One of the most important subsystems in
UTMS21 is Driving Safety Support System (DSSS) that not only
studies and classifies the causes and solutions of traffic accidents,
but also utilizes the latest techniques for context collection and
collision prevention, like the danger zone avoidance control
system, the unforeseeable collision warning system, the right-
turning vehicle-caused accident prevention system, and the
pedestrian crossing support system. Advanced Cruise-Assist
Highway Systems (AHS) [3] is another advanced VSC systems in
the ITS field, which aims to reduce traffic accidents and
congestion and reduce the operational work of drivers as well.
AHS contains three themes. AHS-"i" (information) focuses on
gathering contextual information like other vehicles, obstacles,
and highway surface condition etc; AHS-"c" (control) focuses on
vehicle control assistance; and AHS-"a" (automated cruise)
focuses on providing fully automated driving.

In Europe, the integrated project PReVENT [6] for preventive and
active safety applications has been proposed to help drivers avoid
critical situations in advance, or avoid accidents in the critical
situations, or reduce the severity of accidents if they are not
avoidable. There have been many advanced sensing, digital map
and positioning, and wireless communication techniques
developed and further integrated in dedicated demonstrator
platforms for safety applications. The activities in PReVENT can
be classified into vertical fields that target on the independent
development of a single safety function, like the speed sensing
function and control function, and horizontal fields that target on
the interaction and integration of these functions to develop
intelligent vehicle applications. Another VSC organization
initiated by European vehicle manufacturers is C2CCC (the CAR
2 CAR Communication Consortium) [5], which is dedicated to
further increase of road traffic safety and efficiency. Different
from the projects in US and Japan that target on DSRC
techniques, C2CCC uses the standard IEEE 802.11 and Wireless
ad-hoc network techniques for inter-vehicle communication and
vehicle to roadside infrastructure communication. A list of active
safety applications based on the car 2 car communications have
been proposed to provide advanced driver assistance, user
communications and information services.

This work does not focus on the research of communication
techniques or development of special vehicle applications.
Instead, we introduce a middleware framework to fill the gap
between them and improve the application affordability,
flexibility and adaptability while satisfying their critical real-time
requirements.

2.2 Middleware techniques
Middleware has been a critical technology for developing
distributed applications because it can mask the heterogeneity of
the underlying environment and provide an integrated service
environment to simplify the task of programming and managing
applications. It can be further separated into the multiple layers
(shown in Fig. 3) to provide various functions for vehicle systems.

Communication middleware focuses on integrating distributed
computing systems to act as a unified resource to reduce the
application development cost. Early stage middleware, like the
Common Object Request Broker Architecture (CORBA) [10], the

Distributed Component Object
Model (DCOM) [11], and Java
Remote Method Invocation
(RMI) [12], builds on Remote
Procedure Call (RPC) to
abstract the low-level TCP/IP
communication details and
replace the communication
interface with a local procedure
call or function invocation.
Unlike RPC-based middleware,
Message Oriented Middleware
(MOM) [15, 17], provides an
asynchronous communication
mechanism for distributed
applications based on message
exchanges. MOM improves the system flexibility and robustness
as the change of one client does not require the change of other
clients (called loose coupling). Further, the asynchronous
communication improves the system efficiency by allowing the
processing parallelism, in which the communication caller can
continue processing regardless of the state of the messages and
peer agents.

Component middleware, normally based on a component model
(e.g. CORBA Component Model (CCM) [35]), enables reusable
service components to be organized, configured, and deployed to
develop applications efficiently and robustly. A component is a
service entity that exposes a set of interfaces, which components
use to communicate with each other for collaboration, and
attributes, which specify its parameters that can also be
reconfigured at run-time via component metadata. Component
middleware provides standards for object implementation and
interaction so that it can support generic service components and
then reduces the complexity of software upgrades and increases
the reusability and flexibility of vehicle applications. Existing
component middleware techniques contain both reusable common
services, e.g. optimization of resource consumption (OSA+ [36],
ACE [37]), configurability, (Zen [38], TAO [39]), and reusability
(nORB [40]) etc, and domain-specific services, e.g. OSEK/VDX
[41] for vehicle applications, and ARINC 653 for avionics.

Adaptive and reflective middleware [42, 43] can inspect its
internal representation at runtime and reconfigure its state and
behavior by providing a set of meta-level interface or object for
base-level implementation that handles the real service execution
and operations. Open ORB [44] provides both structural reflection
and behavioral reflection. The structural reflection supports
functional components reconfiguration. It has two meta-models:
the interface meta-model, which allows dynamically recover a
component’s interfaces at run-time, and the architecture meta-
model, which provides access to the component architecture
(Open ORB components are organized in a hierarchical way and a
component may contains multiple sub-components). The
behavioral reflection supports nonfunctional components
reconfiguration. It enables the dynamic insertion of interceptors
on a specific interface to introduce nonfunctional behaviors into
the ORB, such as security checks and concurrency control etc.
Dynamic TAO [45] is a reflective ORB based on a collection of
component configurator. The domain configurator maintains the
references of a TAOConfigurator and a set of servant

Hardware /
Network

Communication
middleware

Component
middleware

Adaptive
middleware

Context-aware
middleware

Applications

Figure 3. Middleware layers

configurators. The TAOConfigurator can then inspect and
dynamically change nonfunctional behaviors of the middleware.

Context-aware reflective middleware actively measures the
application interested contexts and adapts to them automatically
and predicatively to meet the adaptability demands of vehicle
applications. The classification and measurement of the context,
which includes network awareness, device awareness, user
awareness, application awareness, and environment awareness,
has been studied in our previous work [31]. QuO [46] can monitor
the application status at runtime and dynamically allocate QoS
resources robustly based on the adaptive and reflective model to
accommodate the rapidly changing environmental conditions and
application requirements. However, similar with the Dynamic
TAO, QuO does not consider the synchronization delay in the
reconfiguration process while supposing that the reconfiguration
has been constrained in safe conditions in advance.

MobiPADS [13] is a client server based context-aware
middleware that supports both middleware-layer (nonfunctional
behaviors) and application-layer (functional behaviors) adaptation
for mobile devices. It takes advantage of a communication
channel for synchronization in a synchronous way each time the
architecture is reconfigured. The reconfiguration process includes
operation suspension, buffer clearance, and chain-structure
modifications. Because the initializer of the synchronization has
to be suspended until the system architecture of its own and other
participants is reconfigured and the buffered data for previous
architecture is cleared, the reconfiguration time is in a range of
seconds or even more according to their experiments. CARISMA
[14] employs a novel micro-economic approach that relies on a
particular type of sealed-bid auction to handle the conflicts. The
conflict resolution algorithm includes run-time conflict detection,
solution set computation, and bids computation processes for each
reconfiguration. However, the approach is still synchronous and
inherits all the above disadvantages. Different from the existing
context-aware reflective middleware frameworks that use the
synchronous synchronization, MARCHES maintains multiple
component chains and leverages the active message technique to
realize the synchronization in an asynchronous way. According to
the discussion in Section 3 and evaluation in Section 4,
MARCHES can significantly reduce the reconfiguration time
compared to existing context-aware reflective middleware.

2.3 Active messages
The concept of active messages was originally proposed for large-
scale multiprocessors to minimize inter-processor communication
overhead and allow communication to overlap computation [26].
This concept has then been widely used in parallel and distributed
computing systems to reduce communication overhead [27, 28].
Recently, it has been used in wireless sensor network research to
avoid busy-waiting for data to arrive and overlap communication
with other sensor activities [29]. This paper utilizes the active-
message concept for the first time to address the behavior
synchronization problem of the vehicle middleware.

3. System Architecture of MARCHES
As shown in Fig. 4, MARCHES is located between the lower
hardware-and-network layer and the upper application layer to
monitor environments and support vehicle application adaptation.
It is peer-to-peer middleware with one middleware agent per

application in each host. Each MARCHES agent can be separated
into a core layer and an operation layer. The core layer consists of
eight function modules, which construct the adaptive and
reflective framework for monitoring contexts and reconfiguring
the system behaviors. Measurement tools and a hierarchical event
interpreter deal with context measurements and evaluations by
building hierarchical context events (sensors); a decision engine, a
dynamic reconfigurator, and an XML-based script parser support
the MARCHES reflection model and efficient reconfiguration; in
addition, a communication channel for the inter-communication
among peer agents, a distributed awareness manager for
disseminating and synchronizing awareness results [31], and a
component manager for supporting and managing MARECHES
components are designed as surrounding services.
The measurement tools are the lowest building blocks that
monitor the dynamic environments and report the awareness
results as the contextual information to be processed by the event
sensors. The sensors and actuators, in addition to adaptation
policies, are defined by application developers or users in a XML
script file. There are two types of actuators: proactive and reactive
ones, each of which contains a component chain and performs
reconfiguration actions. The XML script parser parses the script
file and constructs the sensors and proactive actuators to process
local data. The reactive actuators are constructed through the
synchronization process with peer agents to process the received
data. Once a context triggers an event sensor, a corresponding
proactive actuator will be activated by the reconfigurator to
perform the reconfiguration actions.
In the operation layer, various services are offered by software
components that implement specific algorithms and protocols.
There are two types of components in the operation layer:
functional components (called marchlets) for performing vehicle
communication and control, and context-awareness components
(called marchtools) for measuring and evaluating situational
contexts. Because we focus on improving the vehicle middleware
efficiency in this research, we do not include such nonfunctional

Adaptation
PoliciesProgram

Awaretool Components

Event Interpreter / Sensors

Script Parser

Decision Engine

Reconfigurator

Act1 Act2 Actn
Proactive Actuators

RAct1 RAct2 RActn
Reactive Actuators

Component Manager

Network / Hardware

Adaptation
Policies Program

Awaretool Components

Event Interpreter / Sensors

Script Parser

Decision Engine

Reconfigurator

Act1Act2Actn
Proactive Actuators

RAct1RAct2RActn
Reactive Actuators

Component Manager

Sync.

Sync.

A Vehicle Safety Application

Distributed Awareness Manager

M
A

R
C

H
ES

 A
ge

nt

Awa. Requester Awa. Requester

M
A

R
C

H
ES

 A
ge

nt

Computing Components

CC1 CC2 CCn

Computing Components

CC1 CC2 CCn
Operation
Layer

Core
Layer

Operation
Layer

Core
Layer

C
om

m
un

ic
at

io
n

C
ha

nn
el

Figure 4. System architecture of MARCHES.

components as the concurrency and security etc. and their
reconfiguration, which are potentially supported by MARCHES.

3.1 MARCHES Reflective Model
MARCHES supports both component-level and system-level
reflection. The component-level reflection deals with the content
and behavior of a given component via the interface metamodel,
which provides discovery of and access to the set of provided and
required interfaces of the component. Based on the component-
level reflection, MARCHES supports standard reflective software
components or other third party components in a cost-efficient
manner, so that it is easily upgradeable to incorporate new
techniques or services in its operation layer and meet the rapid
progress of new algorithms and standards for vehicle applications.
The system-level reflection deals with the structure and graph of
the component connections via the architecture metamodel, which
provides discovery of and operation to the current active actuator.
The system-level reflection allows MARCHES to examine its
internal states at run-time and dynamically reconfigure the
application architecture to enhance its adaptability.

3.1.1 MARCHES components and component-level
reflection
A MARCHES component is a function independent reflective
element that provides an interface metaobject by which a
component can read its own metadata, extract the metadata from
the component (called reification), and use that metadata either to
inform the component user or to modify the component’s
behavior (called absorption). Metadata is information about the
data—that is, information about the types, functions, code, and
etc., which are stored along with a component. By using the
interface metamodel and component-level reflection, MARCHES
can examine the types in a component, create new types at
runtime, interact with or instantiate the types, and dynamically
invoke properties and methods on the instantiated objects [30]
(called the late binding).
To incorporate a new reflective component in MARCHES, users
need to describe the types, interfaces, and other attributes of the
component in a system script file by using our defined IDL
(Interface Description Language), as shown in Fig. 5, so that the
component can be identified and configured by MARCHES at
runtime through the late binding. We have realized three methods
to identify a MARCHES component for vehicle applications: the
exclusive component name for a registered system component,
the complete address for a local component, and the desired
attributes for a registered component in the component manager.
The component type is declared in the ctype part and the alias is
the name of the component used in the adaptation-rule part of the
script. The component can be specified by setting its parameters,
which can also be reconfigured at runtime according to the
adaptation rules. It also provides some interfaces (e.g. input and
output interfaces). The connected input and output interfaces must
support compatible event messages and their connections can also
be reconfigured at runtime.
There are two types of MARCHES components: reconfigurable
functional components (marchlets) and extensible context-
awareness components (marchtools). The context-awareness
components can be further classified into measurement tool

components (named as awaretools) and user defined function
components (named as awarefuncs) built above awaretools.
Marchlets are the basic functional units to construct vehicle
applications. MARCHES supports the publish/subscribe model
for communication and each marchlet provides some output and
input interfaces for component assembly. The output interface of
a marchlet can be subscribed by the message-compatible input
interfaces of other marchlets and publish messages to them.
Measurement tools, which measure and predict real-time context
awareness e.g. network conditions for vehicle communication and
road situations for action replan in MARCHES, are realized as
reflective components (called awaretools) to facilitate the reuse
and extension of existing measurement tools. The context
awareness research has been addressed in our previous work [31].
Awaretools act as the lowest event sources in the event tree that
can be subscribed by higher level event nodes and organized in a
hierarchical way to build event sensors.
MARCHES also supports another type of reflective component—
awarefunc to assist the extension of awaretools. An awarefunc
provides not only output interfaces to accept the subscription
from, and notify higher level sensor nodes, but also some input
interfaces to subscribe to awaretools and process their raw data as
input parameters. Thus it supports user defined functions for pre-
processing the measurement results of awaretools, e.g. getting the
average value of the bandwidth in the last 5 minutes.
To better maintain and update MARCHES components, we have
proposed a distributed service module, called the Component
Manager (CM) that accepts component registration and provides
such services to vehicle applications as component identification,
evaluation, migration, and virtual connection. So far we have
focused our concern on the component employment and realized
component identification function according to a user-provided
component name and version properties; thus we leave the
component evaluation [32], migration [33], and virtual connection
[34] functions for further work.

<component cid="2002">
<addr> D:\Masslets\JPEGCompress.dll </addr>
<name> Masslets.Compress.JPEGCompress </name>
<ctype> Masslet </ctype>
<alias> COMPRESS </alias>
<param pid="001">
<name> SetCompressQuality </name>
<vtype> Int32 </vtype>
<value> 50 </value>

</param>
<interface iid=“001”>
<name> PtrDataInput </name>
<itype> Input </name>
<Message> PDIBEventArgs </Message>

</interface>
<interface iid=“002”>
<name> DataOutput </name>
<itype> Output </name>
<Message> JPEGEventArgs </Message>

</interface>
</component>

Figure 5. The component declaration in MARCHES

3.1.2 MARCHES Reconfigurator and System-level
Reflection
MARHES reconfigurator contains multiple actuators and provides
interfaces to manipulate the actuators so that the application
behaviors can be reconfigured. The actuators are designed as
reflective components to support the MARCHES system-level
reflection. Each actuator (see Fig 6 (a)) contains a component
chain (or graph) for processing application data, a type library for
browsing the component types, and a meta-interface presented in
Fig 6 (b) for its C# code. The meta-interface provides access to its
underlying meta-information and internal states (reification),
including the structure and graph of the component connections
and the actuator status (active/inactive) etc. By accessing the
meta-interface, the reconfigurator can change the actuator meta-
information that leads to a change of the actuator implementation
(absorption), including the structure modification of component
connections and the switch of active and inactive actuators.

3.2 MARCHES Efficient Reconfiguration
For a distributed adaptive system, a reconfiguration process
consists of two steps: the local behavior change that is triggered
actively by the context changes and the distributed behavior
synchronization that is triggered reactively to synchronize local

behaviors with the changed behaviors of other distributed
programs for safe reconfiguration.

3.2.1 Local behavior reconfiguration
In traditional reflective middleware, there is only one component
chain (or graph) in each middleware agent. The reconfiguration
process is then to modify the chain (or graph) structure. However,
due to the operation suspension and synchronous synchronization
during the reconfiguration process, both the overhead and delay
are too large to be tolerable for real-time vehicle applications.
By contrast, MARCHES supports multiple component chains as
shown in Fig. 2, each of which is located in an actuator. Every
actuator is hooked to an event sensor that is described in the same
policy. There is one and only one actuator active at any time and
only the component chain in the active actuator processes the
application data. To reduce the resource consumption by multiple
chains, each actuator only maintains a chain of references, which
point to marchlet instances, and a customized parameter list for
each reference. When contexts change and satisfy a new sensor,
the sensor will notify the decision engine for reconfiguration by
switching active and inactive actuators. That is, the current active
actuator is deactivated by suspending its operations as it reaches a
safe state, where the reconfiguration can be safely performed,
storing its run-time status, and disconnecting the component
chain; the target actuator is then activated by connecting its
components, restoring the run-time status, and resuming its
operations.

3.2.2 Distributed behavior synchronization
Because each distributed middleware agent has its own executive
component chain in the active actuator, behavior synchronization
is a crucial service of the middleware to achieve behavior
consistency for vehicle applications in the reconfigurations. We
have designed and implemented an efficient asynchronous
synchronization protocol in MARCHES based on active messages
(the terminologies of synchronous and asynchronous is borrowed
from the synchronous and asynchronous communication model in
RPC-based middleware and MOM depicted in the related work
section). The basic idea of the proposed asynchronous protocol is
that every middleware agent constructs the reactive actuators for
all connected agents in the initialization phase, and selects one of
them to process each received application layer data packet
according to the active message header attached in the packet.
The synchronization protocol has five initialization steps, such as
those shown in Fig. 7.

 In the middleware initialization phase, proactive actuators
of each agent are constructed based on a user-defined
script file. Each proactive actuator is also associated with
a middleware-assigned unique index and the architecture-
information of an optional reactive actuator.

 The middleware agent then sends a synchronization
request packet to each distributed peer agent. The packet
contains the indices of the proactive actuators and the
architecture-information of the reactive actuators.

 After receiving the synchronization request packet, the
peer agent constructs the reactive actuators according to
the packet information, each of which is associated with
the IP address of the packet sender and a middleware-
assigned unique index as well.

The actuator
component

Component chain
or graph

Type library

Meta
Interface
Comm.
Interfaces

Other
Interfaces

(a)

interface IMetaActuator
{

componentList get_components();
connectionList get_connections();
bool set_components(componentList compList);
bool set_connections(connectionList connList);

bool add_component(CMarchletObj marchlet);
bool remove_component(string marchlet);

bool connect_all_components();
bool disconnect_all_components();

bool connect_components(string senderObj, string senderInterf,
string receiverObj, string receiverInterf);

bool disconnect_components(string senderObj, string senderInterf,
string receiverObj, string receiverInterf);

Object get_component_parameter(string comp, string param);
bool set_component_parameter(string comp, string param, Object value);

EnumActuatorStatus get_active_status();
bool activate();
bool deactivate();
……

}
(b)

Figure 6. (a) The MARCHES actuator architecture and (b) its
meta-interface

 The receiver or the peer agent replys the sender a
synchronization response packet that contains a set of
index pairs, each of which contains an index of the
proactive actuator and the index of the reactive actuator.

 The sender agent replaces the architecture-information of
each reactive actuator with its corresponding index
received from the synchronization response packet.

The above-mentioned initialization is a one-time process for each
peer agent. Then the middleware agent appends the index of the
reactive actuator, which corresponds to the current active
actuator, to the payload of each data packet. The peer agent
receiving the data packet activates the reactive actuator indexed
by the received index to process the data packet correctly.
The active message based asynchronous synchronization protocol
has four advantages: low overhead, short delay, high efficiency,
and better robustness. In general, only the index of the reactive
actuator needs to be stored in the active message header for each
data packet. By using the asynchronous method, the system does
not need to be paused in the synchronization process, which
dramatically reduces the reconfiguration time. Further, based on
the information in the active message header, a peer agent can
always process the received packets by choosing the correct
reactive actuator and then no buffered clearance is needed in the
reconfiguration process, which makes the reconfiguration by our
middleware efficient. Moreover, once the reactive actuators are
constructed in the system initialization phase, the local agent
reconfiguration does not require the availability of other agents
and then is not affected by the network condition or the capacity
of other agents. Thus the robustness of the application is
improved and the communication overhead is reduced.
MARCHES is rule-based reflective middleware, in which all
adaptation rules (or policies) are predefined and applications then
adapt to contexts according to the rules. However, it may be
difficult to predict all the desired policies in advance and users
may need to change the policies based on the vehicle runtime
status. MARCHES provides a re-synchronization method to
support the runtime modification of adaption policies. That is, the

agent suspends its operations, clears data buffer, re-synchronizes
the modified policies with peer agents, and resumes its operations.

3.3 MARCHES Event Model
Situational contexts are very important information in vehicle
applications for either drivers or autonomous control systems to
avoid traffic accidents, especially in complicated environments
like cross streets and crowd highway lanes etc. Existing context-
aware middleware only supports simple context monitoring or the
combination of simple contexts. To improve the expressive ability
and comprehensiveness for context evaluation, a binary tree based
hierarchical event notification model is proposed (see Fig. 8), in
which several events can be organized and integrated as a binary
tree structure to construct an event sensor to monitor and process
interested contexts and trigger subscribed actuators at runtime for
reconfiguration when the conditions of the sensor are satisfied.
MARCHES event model supports both context expressions and
user-defined functions by applying awarefunc components. To
enhance the efficiency of system reconfiguration, MARCHES
contains multiple event sensors for supporting multiple actuators,
so that each actuator can subscribe to dedicated event sensor.
In the constructed event tree, each event node contains a
conditioner, a left hand side (LHS), and a right hand side (RHS).
There are two types of conditioners: the compare conditioner and
the Boolean conditioner that do compare and Boolean operations
on LHS and RHS respectively. The LHS and RHS can subscribe
to the conditioner of a lower-layer event node or an event source,
and notify the conditioner when the lower-layer contexts or
operation results are changed. The event source can be a constant
value, single context awareness, or an awareness expression that
is also built on a binary tree structure, in which each node has an
operator, a LHS, and a RHS. Therefore, all the contexts are
organized in a hierarchical way to form a sensor. The event nodes
in sensors communicate based on the publish/subscribe model. An
upper-layer conditioner or an actuator can subscribe to an event

Initial state of sender:
ProActuator1: indx: 1; ReActuator1
ProActuator2: indx: 2; ReActuator2
ProActuator3: indx: 3, ReActuator3

Synchronization request msg.

Index 1
Integer

ReActuator1 structure
String

Index 2 ReActuator2 structure
Index 3 ReActuator3 structure

Synchronized state of receiver:
ReActuator1: index: 5;
ReActuator2: index: 6.
ReActuator3: index: 7.

Synchronization reply msg.

Index1
Integer

re-Index: 5
Integer

Index2
Index3

re-Index: 6
re-Index: 7

Synchronized state of sender:
ProActuator1: index: 1; re-index: 5
ProActuator2: index: 2; re-Index: 6
ProActuator3: index: 3, re-Index: 7

Sender’s agent Receiver’s agent

One time synchronization

Package with active message:
re-Index payload
e.g. 6

Activate reactive actuator:
ReActuator2 is selected to
process the received packet
according to the index number 6

Synchronization
request

Synchronization
response

Application
payload
packets

Figure 7. The synchronization process in MARCHES

Awareness Y

X 3

Y*

+

X*3+Y

Event Source X XEvent Source

>

LHS RHS

Compare
Conditioner

Compare
Conditioner<

LHS RHS

&&

LHS RHS

Boolean
Conditioner

subscribe notify
notifynotifysubscribe

subscribe subscribenotify notify

notify notifysubscribe subscribe

Sensor

Actuator

notifysubscribe

Awareness X

Figure 8. The binary tree based event notification model.

node or a sensor as a listener. Thus the sensor can monitor and
process the awareness results according to the event tree, and
eventually report interested events to the subscribed actuator and
trigger the application reconfiguration.
To improve the efficiency of sensors, the hierarchical event tree is
constructed according to the Modified Directed Acyclic Graph
(MDAG). That is, before creating a new event node, check
whether an identical node or an inverse node already exists. Event
node a is defined as the inverse node of b if a and b have the same
event source and comparison value, but inverse comparison
operator, e.g. the inverse event of “Min(AVI_CPU, 10) < 1.0” is
“Min(AVI_CPU, 10) 1.0”.
For various application developers or end users, to use the event
model to identify their interested contexts, they can declare the
sensors they want to specify in the script file as shown in Fig. 9
(a). The example means when the average bandwidth during the
last 5 seconds is greater than 10Mbps and less than 20Mbps, the
sensor notifies its subscribed actuators. To facilitate the
configuration of the sensor script, we developed a tool, which is
part of the script development tool that is discussed in section 3.4,
to transfer the advanced language to the script language according
to the operator mapping (Fig. 9 (b)). Fig. 9 (c) is the advanced
language example of Fig. 9 (a)

3.4 MARCHES Description Language and
XML Script file
To facilitate the development of MARCHES supported vehicle
applications, an XML-based system script file is provided for
application developers or end users to customize the application
configuration and adaptation policies. In particular, the script file
can be divided into a declaration part and an adaptation-rule part
(see Fig. 10). The declaration part declares all masslets and
masstools – components used in a local program and middleware
agent. The detail of a component declaration is shown in Fig. 5.
Based on the declaration, the MARCHES agent loads and

instantiates the components by the component-level reflection,
and initializes them with the provided parameters.
The adaptation-rule part contains adaptation policies and each
policy can be further separated into three sections: a sensor, a
proactive actuator, and an optional reactive actuator. The sensor
section can be parsed by the event interpreter to build an event
sensor that monitors interested contexts and accepts the
subscription of the proactive actuator declared in the proactive
actuator section. The proactive actuator section describes the
system architecture-information that is used to update the actuator
internal states by the reconfigurator when it performs
reconfiguration actions. Therefore, the system behaviors can be
dynamically adapted to the context changes through the
MARCHES system-level and component-level reflection
(respectively, architecture reconfiguration and parameter tuning).
The reactive actuator section describes the architecture-
information of an actuator in peer agents that processes the
received data from the proactive actuator, so that the behaviors of
the proactive and reactive actuators can be synchronized in
distributed vehicle systems.
For the image transmission example discussed above, the
component chains in proactive actuators prepare and send video
frames and the chains in reactive actuators receive and display the
frames. There are four marchlets (Grab, Compress, Decompress,
and Display components), two awaretools (available bandwidth
and CPU measurement tools), and two awarefuns (average and
minimum functions). The application behavior can be
dynamically reconfigured by using or not using the Compress
marchlet according to the two adaptation polices, e.g. the first
policy means that when the average available bandwidth in the
last 5 seconds is less than 10Mbps, the sensor notifies the
reconfigurator to active the proactive-actuator that connects the
Grab and the Compress components for reconfiguration.

<sensor>
<event>
<otype> And </otype>

<lhs>
<event>
<otype> GT </otype>
<lhs>
<expr> Ave(AVI_BW, 5) </expr>

</lhs>
<rhs>
<expr> 10 </expr>

</rhs>
</event>
</lhs>

<rhs>
<event>
<otype> LT </otype>
<lhs>
<expr> Ave(AVI_BW, 5) </expr>

</lhs>
<rhs>
<expr> 20 </expr>

</rhs>
</event>
</rhs>
</event>
<sensor>

Ave(AVI_BW, 5)>10 &&
Ave(AVI_BW, 5)<20

==EQ

<>NE

<=LE

<LT

>=GE

>GT

Development
Operator

Script
Operator

(a) (c)

(b)

Figure 9. A sensor declaration example in the XML script file:
(a) XML-based sensor script example, (b) Script operator to
development operator mapping, (c) user development example

<Masslets>
...

</Masslets>

<MassTools>
...

</MassTools>

<Rules>
<rule>
<sensor>
...
<sensor>

<Actuator type=“proactive” sync=“Async”>
<SetParam>
COMPRESS.CompressQuality = 70;

</SetParam>
<SetArch>
Grab.PtrDataOutput -> COMPRESS.PtrDataInput;
COMPRESS.DataOutput -> Socket;
Grab.Start;

</SetArch>
</Actuator>

<Actuator type=“reactive” sync=“Async”>
<SetArch>
Socket -> DECOMPRESS.DataInput;
DECOMPRESS.DataOutput -> DISPLAY.DataInput;

</SetArch>
</Actuator>
</rule>
...
</Rules>

Figure 10. An example of the adaptation rule script.

To facilitate interactive configuration, we developed an XML-
script Development Tool. As shown in Fig. 11, the tool is a C#
graphical user interface that lets users manipulate both the
component and policy configuration and runtime reconfiguration
interactively. The tool supports the advanced language to describe
event sensors and establishes a connection to the MARCHES
middleware system to help the users re-synchronize the local
agent with peer agents by using the mouse when the adaptation
policies are reconfigured at run-time.

4. Implementation and Performance
Evaluation
MARCHES aims at improving the reconfiguration efficiency of
traditional context-aware reflective middleware and supporting
real-time vehicle applications in dynamic environments by using
active messages to coordinate reconfigured application behaviors
asynchronously. However, the reconfiguration process introduces
some performance cost such as extra resource consumptions to
maintain the multiple chains. Therefore it is important to check
the feasibility and efficiency of using MARCHES. We have
analyzed the robustness of MARCHES in the above sections, and
we evaluate its performance cost and benefits in this section in
terms of the memory footprint, reconfiguration time, and
scalability through benchmark applications.

In our experiments, we have implemented the MARCHES system
in C# for both the Windows XP system (WXP) and the Windows
Mobile 5 system (WM5) using visual studio 2005 and encoded
the system script file using XML (eXtensible Markup Language).
The benchmark and application testbed consists of two laptops
(Thinkpad-X60: Intel T2300 1.66GHz, 512MB PC2-5300, and
Windows XP), two PDAs (Dell x51v: Intel XScale 624MHz,
64MB, and WM5) and six desktops (Dell dimension 4550:
Pentium 4 2.66GHz, 512MB) to simulate vehicle and roadside
environments. The PDA hardware configuration is compatible
with that of most on-board GPS devices and the laptop and
desktop configuration is similar with that of the roadside and
remote base station devices. We test the memory footprint,

reconfiguration time in a local setting and evaluate the system
scalability in a distributed setting on both PCs and PDAs.

4.1 Memory Footprint and Active Message
Overhead
In this experiment, we evaluate the local storage size and the run-
time memory consumptions of MARCHES system, components
and actuators. We utilize the C# serialization function to serialize
MARCHES and system objects and measure their run-time
memory usage, like the socket and XML-parser objects.
Serialization means that objects are marshaled by value, that is,
all their various member data are written out to the stream as a
series of bytes. Therefore, we can use the length of the stream as
the memory consumption.

Table 1. MARCHES middleware and resource consumption.

Windows XP system Windows Mobile 5

Components Local
file size

Run-time
memory

usage

Local
file size

Run-time
memory

usage
Middleware

(MARCHES.dll) 56KB 896KB 46KB 123KB

Empty Masslet
(eMasslet.dll) 4KB 139Byte 4KB 74Byte

Simple Masslet
(sMasslet.dll) 16KB 356Byte 5KB 147Byte

Simple Masstool
(sMassTool.dll) 16KB 279Byte 4KB 94Byte

The local file size and run-time memory usage of MARCHES
middleware and components (marchlets or awaretools) are shown
in table 1 for both WXP and WM5 respectively. The run-time
memory usage of the middleware is measured after the system
initialization and before loading and instantiating any
components. The empty masslet is an empty reflect component
without containing any application-specific methods and variables

(a) Component declaration (b) Adaptation policies

Figure 11. The MARCHES script file development tool

and the simple masslet containing one input interface, one output
interface, and 5 double-type parameters. Although we use very
similar source code for both WXP and WM5, the run-time
memory consumption is much different due to the mobile
platform code optimization.

Table 2. Parameter notation of resource consumption.

Notation Parameter Default

pijk
The size of parameter k for marchlet

j in acutator i 10 bytes

lij
The reference and name size of

marchlet j in actuator i 12 bytes

ai The index size of actuator i 8 bytes

Because MARCHES contains multiple actuators, each of which
consists of a complete chain of components, it is important to
analyze the overhead of the multiple actuators. Table 2 describes
the notation used in the analysis of resource consumption for
maintaining multiple actuators. The memory consumption R is
then expressed as:

∑ ∑ ∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟

⎠

⎞
⎜
⎝

⎛
+=

i
i

j
ij

k
ijk alpR

 .
(1)

For the MARCHES agent in our example that contains 2 actuators
as described in Fig. 10, the resource consumption is 102 bytes.
For a more complicated MARCHES agent that contains 5
actuators, 10 marchlets for each actuator, and 10 parameters for
each marchlets, the resource consumption is 5640 bytes (≈ 5.5
KB) that is still fairly small for most on-board vehicle devices
hosting megabits or gigabits memories.

The overhead of the one-time synchronization initialization
process includes the synchronization request (architecture-
information of the reactive actuators) and synchronization
response (index pairs) packets that are much smaller than the
payload size of a data packet. After the initialization, only an
active message header is appended to each data packet to store the
index of a reactive actuator.

4.2 Time Efficiency (middleware performance
in a local setting)
The major goal of MARCHES is to improve middleware
efficiency. In this section, we evaluate comprehensive time
efficiency of MARCHES system according to some
benchmarking applications, including: component loading time,
reconfiguration time, event sensor response time, and message
exchange time.

Table 3. Benchmarking MARCHES component loading time.

 Comp. # 1 10 100 1000 10000
Ave. (ms) 0.163553 0.863828 8.95057983.71129875.7631
Standard
Dev. (ms) 0.003973 0.015096 0.1883311.0919532.016096PC

Confidence
Int. (α=0.5) 0.000893 0.003394 0.0423420.2455040.453279

PDA Ave. (ms) 1.693265 190.6756 2211.64724387.93

Standard
Dev. (ms) 0.024551 0.382868 2.09783561.17155

Confidence
Int. (α=0.5) 0.00552 0.08608 0.47165613.75319

4.2.1 Component loading time
The component loading time is defined as the time period of
loading a masslet, checking its type, and instantiating the object
based on the parameters encoded in the script file. The maximum
number of component files stored in a PDA folder is 1000. All the
data are calculated based on 10 repeated tests, as shown in table 3.

4.2.2 Behavior reconfiguration time
By using active messages, MARCHES reconfiguration is realized
by switching component chains, which disconnects the current
component chain in the active actuator and connects the
component chain of the triggered actuator by an event sensor.
Thus we have:

.Trec = Tdisc + Tconn (2)

The component connection time and disconnection time in our
experiment are shown in table 4 and 5.

Table 4. Benchmarking MARCHES component connc. time.

 Comp. # 1 10 100 1000 10000

Ave. (ms) 0.039887 0.351814 4.413969 40.97256 415.5276
Standard
Dev. (ms) 0.000271 0.023946 0.771114 0.658318 6.238717PC

Confidence
Int. (α=0.5) 6.1E-05 0.005384 0.173369 0.14801 1.40265

Ave. (ms) 0.564239 3.717504 41.76759 411.3645
Standard
Dev. (ms) 0.006986 0.025047 1.066252 25.64663

PDA
Confidence
Int. (α=0.5) 0.001571 0.005631 0.239725 5.766131

Table 5. Benchmarking MARCHES component discon. time.

 Comp. # 1 10 100 1000 10000
Ave. (ms) 0.041129 0.361033 4.450224 41.90418 421.084
Standard
Dev. (ms) 0.001974 0.029886 1.028386 0.656612 3.402015PC

Confidence
Int. (α=0.5) 0.000444 0.006719 0.231212 0.147626 0.764875

Ave. (ms) 0.533162 3.836 44.56978 448.623
Standard
Dev. (ms) 0.009623 0.018377 2.366826 34.49798

PDA
Confidence
Int. (α=0.5) 0.002164 0.004132 0.532133 7.756178

The experimental results demonstrate that the architecture
reconfiguration time is in the range of hundreds of microseconds
when the middleware needs to change 10 components for
reconfiguration, and is several milliseconds for changes of 10,000
component connections. Further, the reconfiguration time in

MARCHES is only determined by local hardware resources so
that the time is very stable. By contrast, the reconfiguration time
of traditional middleware systems is highly related with network
conditions as they use synchronous synchronization protocols.
For example, MobiPADS takes 10s for 5 component deletion and
5 component addition operations when the bandwidth is 20kbit/s
and 3s for the same operations when bandwidth is 1Mbits/s
according to their experimental results [13].

4.2.3 Event sensor notification time
Event sensor notification time is another important metric to
evaluate the system responsiveness to environments. To evaluate
the infection of the event structure to the notification time, we test
the time based on a linear tree mode, where there is only one
event source in each level, and a binary tree mode, where
different awaretools are constructed to a full binary tree.
Therefore, the number of simple event sources (awaretools) used
in the linear tree mode is a constant 1, and the low level
composite event is used as the high level event source. The
number of simple event source used in the binary tree mode is
related with the depth of the tree, and we have Ntools = 2n where n
is the event-tree level. The test results are shown in table 6 and 7.

Table 6. Benchmarking linear tree event notification time

 Level # 2 5 10 15 100

Ave. (ms) 0.00596 0.006115 0.006373 0.006674 0.01164
Standard
Dev. (ms) 0.000279 0.000168 0.000286 0.000381 0.00152PC
Confidence
Int. (α=0.5) 6.28E-05 3.77E-05 6.42E-05 8.57E-05 0.00034

Ave. (ms) 0.104376 0.09494 0.109778 0.116957 0.51374
Standard
Dev. (ms) 0.000894 0.004208 0.005677 0.006546 0.00863PDA
Confidence
Int. (α=0.5) 0.000201 0.000946 0.001276 0.001472 0.00194

Table 7. Benchmarking binary tree event notification time

 Level # 2 5 10 15

Ave. (ms) 0.00590 0.00621 0.006736 0.01288
Standard
Dev. (ms) 0.000218 0.000305 0.000168 0.00267 PC
Confidence
Int. (α=0.5) 4.91E-05 6.87E-05 3.77E-05 0.0006

Ave. (ms) 0.085880 0.092308 0.116889 0.145231
Standard
Dev. (ms) 0.001146 0.000985 0.005108 0.008006PDA
Confidence
Int. (α=0.5) 0.000258 0.000221 0.001148 0.0018

From the results, we can see that the event notification time is
much smaller than the architecture change time since all the event
notifications occur in the same thread through messages. Further,
the notification time is only related with the level of the
hierarchical event tree, and not affected much by the tree
structure. This is because an event source only notifies the
subscribed upper layer event listeners, which creates a shortest
message path from the simple event source located in the lowest

level to the actuator and the path length is equal to the depth of
the tree.

4.2.4 Message exchange time
MARCHES belongs to MOM and uses the publish/subscribe
communication model. Message exchange time is defined as the
time period between the time when the application data are input
to the first marchlet and the time when the data are output from
the last marchlet after they are processed by all marchlets of the
active actuator. It stands for the communication efficiency of
MARCHES. In this experiment, we only consider the scenario
that all marchlets are located in the local agent. To support the
distributed component communication, we can either migrate
remote components to the local host or use RPC for remote
communication, which belong to our future work. From the
results in table 8, we observe that the time is just several
milliseconds for message exchanges through 10000 components
in a PC and 1000 components in a PDA, which is fairly small
compared to the time for application data processing.

Table 8. Benchmarking MARCHES message exchange time.

 Comp # 1 10 100 1000 10000

Ave. (ms) 0.001397 0.001583 0.004656 0.032029 1.423148
Standard
Dev. (ms) 0 0.00014 0.00014 0.00073 0.00433 PC
Confidence
Int. (α=0.5) 0 3.14E-05 3.14E-05 0.000164 0.000973

Ave. (ms) 0.01535 0.018769 0.080308 1.466872
Standard
Dev. (ms) 0.000447 0.001131 0.001359 0.00519 PDA
Confidence
Int.l (α=0.5) 0.000101 0.000254 0.000305 0.001167

4.3 Scalability (middleware performance in a
distributed setting)
In MARCHES, a middleware agent maintains not only local
proactive actuators, but also reactive actuators built for remote
peer agents through the synchronization. Thus, the memory
consumption is closely related with application scale. According
to (1), the memory consumption R for a distributed vehicle
applications is then modified as:

()∑=
t

tRR . (3)

where t is the index of peer middleware agents.

For example, if a vehicle application has 10 distributed programs
deployed in vehicles and roadside infrastructure, each program
contains 5 proactive actuators, 5 reactive actuators, each actuator
has 10 marchlets, and each marchlet has 10 parameters, and if we
use the default value setting in table 2, the memory consumption
of each program is 5640 bytes × 10 (≈ 55 KB), which is still
relatively small to most vehicle devices, like GPS.

5. Conclusion
In this paper, we have described a context-aware reflective
middleware framework called MARCHES to support time-critical

adaptive vehicle systems. The overall objective of MARCHES is
to improve the reconfiguration efficiency that has been realized
by proposing a new adaptation structure of multiple component
chains and a novel synchronization protocol using active
messages to coordinate reconfigured behaviors asynchronously.
Based on the architecture, MARCHES actuators perform
reconfiguration actions by switching active and inactive
component chains, which can reduce the local behavior change
time compared to the traditional reconfiguration method of
modifying the single chain architecture. Further, the asynchronous
synchronization protocol dramatically reduces the reconfiguration
time by eliminating the operation suspension and buffer clearance
delays in the reconfiguration process in contrast to the traditional
synchronous synchronization protocols in existing context-aware
reflective middleware systems. Besides improving the efficiency,
MARCHES offers some other benefits, including: (1) both
component level and system level reflection for supporting the
development of generic context-aware vehicle applications; (2) a
binary tree based hierarchical event notification model for
building efficient and comprehensive context-awareness sensors;
and (3) an architecture-level description language that describes
components, event sensors, actuators, and adaptation policies and
a system-script development tool that facilitates the development
of vehicle applications.

We have implemented and evaluated MARCHES in benchmark
applications. The complete implementation of MARCHES and
the applications allows us to test the memory footprint, time
efficiency, robustness, and scalability of the middleware in
vehicle and roadside environments, and gain insights into the
adaptive and reflective middleware system design and behavior
reconfigurations. The experiment results and analysis demonstrate
that (i) the reconfiguration time in traditional adaptive and
reflective middleware has been reduced by several magnitudes
from seconds to hundreds of microseconds, (ii) the extra costs
introduced by the multi-actuator architecture in MARCHES are
extremely low comparing the hardware resources of vehicle
devices, and (iii) the robustness and scalability are improved as
well in MARCHES compared to traditional middleware.

The experiment results we have achieved so far are very positive,
but there are some unexplored issues in MARCHES for future
vehicle applications, which will be our future work.

 The component evaluation, identification, and migrations
in the proposed component manager,

 The runtime reconfiguration of nonfunctional behaviors
for complex vehicle systems, like the security strategies,
communication styles, and routing protocols in mobile ad-
hoc networks,

 The safe adaptation issue in behavior reconfiguration,
especially when the behavior is related with history
information, and

 The comprehensive deployment of MARCHES in real
vehicle applications and experimental evaluations.

6. ACKNOWLEDGMENTS
The authors would like to acknowledge the support by the
National Science Foundation (Award# 0438300).

7. REFERENCES
[1] Ray, R., Vehicle Infrastructure Integration Program Status,

online document: http://www-nrd.nhtsa.dot.gov/pdf/nrd-
01/NRDmtgs/2005Honda/Resendes_VII.pdf, retrieved on
November 15, 2008

[2] Gene, M., CICAS Program Overview, TRB VII / CICAS
Workshop, January 13, 2008

[3] Jiro, K., Advanced Cruise-Assist Highway System (AHS)
Technology: System Design and Proving Test Facility
Design, the 6th AHS Research Seminar, June 6, 2002

[4] Yasuyulu, A., Driving Safety Support System (DSSS) in the
Aging Society, In: Proceedings of Intelligent Transportation
Systems, Tokyo, Japan, 1999.

[5] CAR 2 CAR Communication Consortium, CAR 2 CAR
Communication Consortium Manifesto, online document:
http://www.car-2-car.org/fileadmin/downloads/C2C-
CC_manifesto_v1.1.pdf, retrieved on November 15, 2008

[6] Matthias S., Tapani M., and Joachim I. etc., IP PReVENT
Final Report, online document: http://www.prevent-
ip.org/download/deliverables/IP_Level/PR-04000-IPD-
080222-
v15_PReVENT_Final_Report_Amendments%206%20May
%202008.pdf, retrieved on November 15, 2008

[7] http://www.bts.gov/publications/national_transportation_stati
stics/html/table_01_11.html, retrieved on November 15,
2008

[8] http://www.lawcore.com/car-accident/statistics.html,
retrieved on November 15, 2008

[9] Tarek A., Christopher D. G., Raj R., John A S., Distributed
Real-time and Embedded Systems Research in the Context
of GENI, NSF Workshop on Distributed Real-time and
Embedded Systems, September 26, 2006

[10] Ron, B.N., CORBA: A Guide to Common Object Request
Broker Architecture. McGraw-Hill, Inc. (1995)

[11] Troy, B.D., Java RMI: Remote Method Invocation. Foster
City, Calif.: IDG Books Worldwide (1998)

[12] Thuan, L.T., Learning DCOM. Sebastopol, Calif.: O’Reilly,
(1999)

[13] Alvin, T.C., Siu-Nam, C., MobiPADS: A Reflective
Middleware for Context-Aware Mobile Computing, In: IEEE
Transaction on Software Engineering, 29(12) (2003)

[14] Licia, C., Wolfgang, E., Cecilia, M., Carisma: context-aware
reflective middleware system for mobile applications, In:
IEEE Trans. on Software Engineering, 29(10), pp. 929–945
(2003)

[15] Banavar, G., Ghandra, T., Strom, R.E., Sturman, D.C., A
Case for Message Oriented Middleware, In: Proceedings of
the 13th International Symposium on Distributed
Computing, Bratislava, Slovak Republic (1999)

[16] Tai, S., Totok, A., Mikalsen, T., Rouvellou, I., Message
Queuing Patterns for Middleware-Mediated Transactions. In:
Proceedings of SEM 2002, Orlando, FL, Springer-Verlag
(2003)

[17] Carzaniga, A., Rosenblum, D.S., Wolf, A.L., Design and
Evaluation of a Wide-Area Event Notification Service, In:
ACM Transaction on Computer Systems, 19(3), 332-383
(2001)

[18] Geihs, K., Middleware Challenges Ahead, In: IEEE
Computer, 34(6) 24-31 (2001)

[19] Andersen, A., Blair, G.S., Stabell-Kulo, T., Myrvang, P.H.,
Rost, T.N., Reflective Middleware and Security: OOPP
meets Obol, In: Proceedings of the Workshop on Reflective
Middleware, Middleware 2003, Rio de Janeiro, Brazil;
Springer-Verlag, Heidelberg, Germany (2003)

[20] Blair, G.S., Coulson, G., Andersen, A., Blair, L., Clarke, M.,
Costa, F., Duran-Limon, H., Fitzpatrick, T., Johnston, L.,
Moreira, R., Parlavantzas, N., Saikoski, K. The Design and
Implementation of Open ORB 2, In: IEEE Distributed
System Online, 2(6) (2001)

[21] Object Management Group, CORBA Components OMG
Document formal 02-06-65 (2002)

[22] Garbinoto, B., Guerraoui, R., Mazouni, K.R., Distributed
Programming in GARF, In: Proceedings of the ECOOP
Workshop on Object-Based Distributed Programming,
Springer-Verlag, Kaiserslautern, Germany, pp. 225-239
(1993)

[23] McAffer, J., Meta-level Programming with CodA, In:
Proceedings of the European Conference on Object-Oriented
Programming (ECOOP), Aarhus, Denmark, (1995)

[24] Cazzola, W., Ancona, M., mChaRM: a Reflective
Middleware for Communication-Based Reflection. In: IEEE
Distributed System On-Line, 3(2) (2002)

[25] Kon, F., Roman, M., Liu, P., Mao, J., Yamane, T.,
Magalhaes, L.C., Campbell, R.H., Monitoring, Security, and
Dynamic Configuration with the DynamicTAO Reflective
ORB. In: Proceedings of the IFIP/ACM International
Conference on Distributed Systems Platforms and Open
Distributed Processing (Middleware 2000), New York
(2002)

[26] Thorsten, V.E., David, E.C., Seth, C.G. Klaus, E.S., Active
messages: a mechanism for integrated communication and
computation, In Proceedings of the 19th Annual International
Symposium on Computer Architecture, pp. 256–266, Gold
Coast, Australia (1992)

[27] Alan. M., David, C., Active Message applications
programming interface and communication subsystem
organization, In: Technical report, Dept. of Computer
Science, UC Berkeley, Berkeley, CA (1996)

[28] Alan. M., David, C., Design challenges of virtual networks:
Fast, general-purpose communication, In: Proceedings of the
1999 ACM Sigplan Symposium on Principles and Practise of
Parallel Programming (PPoPP‘99), vol. 34.8, pp. 119–130,
A.Y. (1999).

[29] Eduardo, S., Germano, G., Glauco, V., Mardoqueu, V.,
Nelson, R., Carlos, F., A Message-Oriented Middleware for
Sensor Networks, In: Proceedings of the 2nd Workshop on
Middleware For Pervasive and Ad-Hoc Computing, Toronto,
Ontario, Canada, (2004).

[30] Qusay, H., Middleware for Communications, 1st ed., John
Wiley & Sons Ltd., Chichester, England (2004)

[31] Qiang, W., Liang, C., AwareWare: an Adaptation
Middleware for Heterogeneous Environments, In:
Proceedings of 2004 IEEE International Conference on
Communications (ICC 2004), Vol. 3, pp. 1406-1410, Paris,
France (2004)

[32] Justin, M. P., Hubert, P., Umar, S., Grace, C., Chris, T.,
Steve, W., Structured Decomposition of Adaptive
Applications, In: Proceedings of the 6th IEEE International
Conference on Pervasive Computing and Communication
(PerCom) (2008)

[33] Stefanos, Z., Cecilia, M., The SATIN Component System—
A Metamodel for Enginnering Adaptable Mobile System, In:
IEEE Trans. on Software Engineering. 32 (11) (2006)

[34] Radu, L., Atul, P., DACIA: A Mobile Component
Framework for Building Adaptive Distributed Applications,
In: Technical Report CSE-TR-416-99, University of
Michigan, EECS (1999)

[35] Object Management Group, CORBA Component Model
Joint Revised Submission, OMG Document orbos/99-07-01.

[36] Uwe B., Aurelie B., Florentin P., and Etienne S., Distributed
Real-Time Computing for Microcontrollers - The OSA+
Approach. In Proceedings of the Fifth IEEE International
Symposium on Object-Oriented Real-Time Distributed
Computing, page 169. IEEE Computer Society, 2002.

[37] Schmidt D., Huston S., C++ Network Programming:
Resolving Complexity with ACE and Patterns, Addison-
Wesley, Reading, MA, 2001.

[38] Raymond K., Douglas C. S., Carlos O. Towards highly
configurable real-time object request brokers. In Proceedings
of ISORC’02, pages 437–447, 2002.

[39] Douglas C. S., David L. L., and Sumedh M., The design of
the TAO real-time object request broker. Computer
Communications, 21(4):294–324, Apr. 1998.

[40] Venkita, S., Guoliang, X., Christopher D., and Cytron, R.,
The Design and Performance of Special Purpose
Middleware: A Sensor Networks Case Study, 2003.
Technical report of the University of Washington Saint
Louis 2003, # 6.

[41] OSEK Comitee. OSEK/VDX Home Page, 2004.
http://www.osek-vdx.org/

[42] Garbinato, B., Guerraoui, R., and Mazouni, K.R., Distributed
Programming in GARF, Proceeding of the ECOOP
Workshop on Object-Based Distributed Programming,
Springer-Verlag, Kaiserslautern, Germany, pp. 225-239,
1995

[43] McAffer, J., Meta-level Programming with CodA.
Proceedings of the European Conference on Object-Oriented
Programming (ECOOP), Aarbus, Denmark, 1993

[44] Gordon S. B., Geoff C., Anders A., The Design and
Implementation of Open ORB 2. IEEE Distributed Systems
Online 2(6): ,2001

[45] Fabio K., Manuel R., and Ping L. etc., Monitoring, Security,
and Dynamic Configuration with the DynamicTAO

Reflective ORB, IFIP International Conference on
Distributed Systems Platforms and Open Distributed
Processing (Middleware'2000). New York. April 3-7, 2000.

[46] Zinky, J. A., Bakken, D. E., and Schantz, R., Architectural
Support for Quality of Service for CORBA Objects. Theory
and Practice of Object Systems, 3(1), 1-20. 1997

