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ABSTRACT 
Software has become crucial to develop vehicle systems. Future 
unmanned intelligent vehicle safety systems will increasingly rely 
on situational contexts collected at runtime through temporally 
built ad-hoc and dynamic networks for vehicle-to-vehicle and 
vehicle-to-roadside communications and dynamic adaptation to 
the contexts to improve vehicle safety and reduce traffic 
congestion. Context-aware reflective middleware, which can 
measure real-time contexts and accordingly reconfigure the 
behavior of supported applications, is an important technique to 
enhance the affordability, flexibility, and adaptability of the 
future vehicle safety systems. However, the long reconfiguration 
time of existing context-aware reflective middleware cannot 
satisfy the stringent real-time requirement of the vehicle systems 
and thus limits its adoption.  
In this paper, we present MARCHES, a context-aware reflective 
middleware framework, which improves the reconfiguration 
efficiency for engineering adaptive real-time vehicle applications 
in dynamic environments. Different from traditional single 
component-chain based middleware, MARCHES supports an 
original structure of multiple component chains to reduce local 
behavior change time. Further, according to the new structure, a 
novel synchronization protocol using active messages is proposed 
to reduce distributed behavior synchronization time. Experimental 
results show that the reconfiguration time of MARCHES is 
reduced from seconds (s) to hundreds of microseconds (μs). 
Evaluations demonstrate that MARCHES is also robust and 
scalable and generates small memory footprint, which makes it 
suitable for supporting real-time vehicle applications.   
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1. INTRODUCTION 
Vehicles have been one of the most important tools in modern life 
to provide us transportation and convenience and even evaluate 
the productivity of a country. According to a 2006 DOT study, 
there were about 250 million registered passenger vehicles on the 
road in US, and approximately 16 million new vehicles are sold 
every year [7]. On the other side, the abundance of vehicles leads 
not only to congestion and energy waste but also to serious traffic 
accidents. On an average, there are more than 6 million car 
accidents on the roads of the US annually. More than 3 million 
people get injured due to car accidents, with more than 2 million 
of these injuries being permanent and more than 40 thousand 
deaths every year [8].  

To improve the vehicle safety and efficiency, researchers have 
developed many electronic and digital assistant systems in this 
area, like the OnStar telematics system, Google Earth, and 
Microsoft’s Windows Live Local [9]. These systems can provide 
helpful information to automotive drivers and assist them to make 
correct decisions. However, they still require the participation of 
human, and most of the provided information is static or delayed, 
and thus they are lack of the autonomy to emergent accidents, 
which are the major cause for people injury.  

Recent advances in wireless technologies, like IEEE 802.11 and 
Dedicated Short Range Communication (DSRC), smart sensing, 
and control systems have led to the flourish of intelligent vehicle 
safety applications, which are designed to create autonomous, 
self-organizing, and mobile wireless ad-hoc networks connecting 
vehicles and roadside infrastructure with each other and integrate 
these networks with vehicle-control systems, like automatic 
engine, transmission, and braking systems for context gathering 
and avoidance of dangerous scenarios. These Vehicle Safety 
Communication (VSC) techniques help share situational contexts, 
like the actions of nearby vehicles and the situations of road-side 
infrastructure based on vehicle-to-vehicle and vehicle-to-roadside 
communication. Along with the development of VSC techniques, 
a lot of vehicle safety applications are also proposed to provide 
the real-time contextual information to drivers and warn them in 
critical situations or autonomously react to such situations to 
avoid accidents through on-board equipments.  

As the VSC technologies and VSC supported vehicle safety 
applications are still being developed worldwide, certain 
particular challenges that obstruct or delay their further advances 
in this radically new realm also emerge. The first challenge is 
affordability. Although there are many VSC projects have been 
initialized, like the VII [1] and CICAS [2] in US, AHS [3] and 
DSSS [4] in Japan, and C2CCC [5] and PReVENT [6] in Europe, 
most of them have their individual communication standards and 
supported safety applications built entirely from scratch, which 
makes their development costs very high. The second challenge is 
flexibility. Existing multi-faceted and widely explored VSC 
projects lack flexible capable of supporting different 
communication protocols and new technical standards, e.g. VII 
uses DSRC as its communication standard while C2CCC only 
supports IEEE 802.11, which makes it difficult to communicate 
between a car installed with DSRC equipments and a car installed 
with C2CCC equipments. The monolithic application structure 
also increases the application update cost. The third challenge is 
adaptability. The communication between vehicles or vehicle and 
roadside will be more complex and with higher overload in future, 



for example, PReVENT plans to support 2D/3D image capture 
and transmission, which can help drivers or intelligent vehicles 
share visions for action replan. On the other hand, the temporally 
constructed ad-hoc networks among vehicles and roadside 
infrastructure are volatile, while existing VSC techniques are lack 
of adaptability to the changing contexts at runtime, which affects 
the communication robustness and required QoS, like latency, 
jitter, and security etc., due to the high speed of vehicles. We 
argue that all these challenges have prevented vehicle safety 
applications from fully taking advantages of flourishing VSC 
techniques and then motivate to introduce an important software 
technique, context-aware reflective middleware, to solve these 
challenges and support future intelligent vehicle applications.   

Context-aware reflective middleware techniques are favorable for 
vehicle applications for the following reasons. First, middleware, 
as gluing software between applications and underlying operating 
systems and networks, can abstract low-level implementation 
details and heterogeneity and then facilitate the implementation of 
complex vehicle applications so that developers can pay more 
attention to the application logic and architecture design. Second, 
reflective middleware uses component-based metamodel to 
enables reusable service components to be organized, configured, 
and deployed to develop vehicle applications, which consists of a 
component chain or a functional path, efficiently and robustly. 
(For example, the minimal meaningful vehicle safety application 
consists of a communication component and a warming or control 
component). Therefore, it can reduce the cost and complexity of 
software upgrades by incorporating new technique and protocol 
components and improve application flexibility. Third, context-
aware reflective middleware can automatically measure and 
evaluate real-time situational contexts, e.g. the network 
conditions, hardware resources and application QoS, and 
dynamically reconfigure the application behaviors to adapt to the 
changing contexts at runtime. Therefore, it improves the 
adaptability and communication robustness of vehicle 
applications. 

To better clarify the motivations and potential advantages behind 
the context-aware reflective middleware for vehicle systems, we 
present an example of possible use case (see Fig. 1). Suppose a 
road has two lanes in one direction, on which car 1 and car 5 are 
on the lane 1 and car 2, 3, 4, and 6 are on the lane 2. There are 
two scenarios that a vehicle system may need to adapt its 
behaviors to real-time contexts.  

The first scenario is for robust communication. Car 1 and car 2 
share their visions by exchanging image data for action replan 
when they drive closely while both only have partial vision of the 
road condition. Each image frame is separated into tiles and 
transmitted in a sequence based on different priorities. The tiles 
closer to the interest point have higher priority and will be 
transmitted first with high image quality. However, the network 
condition, e.g. the bandwidth, between car 1 and car 2 is dynamic 
and volatile. The middleware can automatically measure the 
bandwidth and adaptively reconfigure the compression behaviors 
at runtime, e.g. using or not using compression component, or 
setting varied compression ratio, to satisfy the required QoS, like 
the specified transmission time, in the application while provide 
images as clear as possible.  

The second scenario is for action replan. Car 4 finds that it is too 
congested to drive on lane 2 while there are much less number of 

cars on lane 1 through the 
communication with 
nearby cars and roadside 
infrastructure. It then needs 
to switch to lane 1 to 
reduce traffic congestion. 
The middleware in this 
scenario will automatically 
collect the position and 
speed information of 
neighbor cars and the road 
conditions and then make 
the decision of switching to 
lane 2 by adjusting the 
direction and speed 
parameters of its software 
control components.  

When we applied existing 
context-aware reflective 
middleware techniques to 
vehicle safety applications 
in our experiments, we 
found that the existing 
techniques could not satisfy the stringent real-time requirements 
of vehicle applications, in which a minor delay may result in 
critical accidents and loss of lives and properties, due to their long 
reconfiguration time. This is resulted by the inefficiency of their 
synchronization protocols. Synchronization is a critical process 
for reconfiguring a networked vehicle system that consists of 
multiple programs distributed on different vehicles. Because each 
program has its own behaviors and local architecture, it is 
important to coordinate the reconfigured behaviors to achieve 
global behavior consistency. For example, changing or adding an 
image compression component in a local program may require a 
corresponding change or insertion of the decompression 
component in receiver programs in the scenario 1 of above 
example; reconfiguring the direction or speed of a vehicle 
requires corresponding action changes of other related vehicles to 
avoid collision in the scenario 2. Synchronization protocols are 
proposed to address the coordination problem so that a local 
program can dynamically synchronize its behaviors at runtime to 
the changed behaviors of other distributed programs without any 
prior knowledge. However, the synchronization process of 
existing context-aware reflective middleware is synchronous that 
requires the synchronization participants to be blocked until the 
reconfiguration process is completed. As a result, the 
reconfiguration time is normally in a range of seconds or even 
tens of seconds and affected by the network conditions and the 
availability of other synchronization participants. The long 
reconfiguration time limits the adoption of context-aware 
reflective middleware by vehicle systems. 

In this paper, we propose MARCHES (Middleware for Adaptive 
Robust Collaborations across Heterogeneous Environments and 
Systems), a context-aware reflective middleware framework, to 
solve the critical issue of the reconfiguration time and to engineer 
time-critical vehicle systems in dynamic environments. Compared 
to the traditional middleware that supports the single component-
chain (Fig. 2a) based application architecture, MARCHES 
maintains multiple component chains (Fig. 2b). Therefore, there is 
a new method proposed for the behavior reconfiguration that 
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Figure 1. An example of vehicle 
application scenario supported 
by the context-aware reflective 
middleware. 



switches active and inactive chains. This new method replaces the 
traditional method of modifying the single-chain structure to 
reduce the local behavior change time. Further, according to this 
method, an efficient active-message based synchronization 
protocol is proposed for asynchronously coordinating the 
behaviors of distributed programs. The key idea of the protocol is 
that each application-layer data packet takes an active-message 
header that indexes the correct component chain of the packet 
receiver to process the data payload. Therefore, the distributed 
behavior synchronization time is also dramatically reduced by 
eliminating the operation suspension time and buffer clearance 
time. The robustness of the distributed application is improved 
since the use of active messages results in no synchronous 
communication and system halting in the synchronization 
process. The costs introduced by this improvement, such as extra 
resource consumption and active-message overhead, are 
extremely low comparing to capacity of the various computing 
platforms, including mobile devices that are used as vehicle GPS 
devices, as validated by our experiments. 

1.1 Terminologies 
The following terminologies will be used in this paper: 

 Synchronization is the process of coordinating the 
behaviors of collaborative programs in a distributed 
application. When the behavior of a local program is 
reconfigured to adapt to changing contexts, it requires its 
peer programs to change their behaviors correspondingly 
for system consistency.  

 Synchronous synchronization means the synchronization 
is realized through a synchronous method that requires all 
synchronization participants to complete changing their 
behaviors at the same time and suspend their application-
layer operations in this process. 

 Asynchronous synchronization means the synchronization 
is realized through an asynchronous method, in which the 
local program can resume its operation right after its own 
behavior is changed for adaptation and other 
synchronization participants reactively change their 
behaviors only when they communicate with this local 
program. 

 Sensor is the hierarchical context events that can measure 
and evaluate specified contexts at runtime and notify 
subscribed actuators for adaptation. 

 Actuator is a reflective component that contains a set of 
functional components to form a functional path or 
component chain, which process application-layer data, 
and a meta-interface, which can represent its internal 
states and reconfigure the component properties or chain 
structure of the actuator at runtime.  

 Active actuator means the actuator status is active. There 
is one and only one actuator active at any time and only 
the component chain in the active actuator processes 
application-layer data. Various actuators can be activated 
or deactivated to adapt to changing context according to 
user-defined policies. 

 Proactive actuator is constructed at the system 
initialization phase to process local data and proactively 
change its behaviors to adapt to changing contexts at 
runtime according to user-defined adaptation rules. 

 Reactive actuator is constructed at the system 
synchronization phase to process received data from peer 
programs and reactively change its behaviors according to 
the active message header of the received data packet. 

This rest of the paper is organized as follows. Section 2 covers the 
related work. Section 3 describes the details of the MARCHES 
architecture. In Section 4, we have implemented and validated 
MARCHES in our experiments. Finally, we conclude this paper 
and present some future work in Section 5. 

2. Related Work 
2.1 Advances and Applications in Vehicular 
Ad Hoc Networks 
The research and development of vehicle safety communication 
(VSC) techniques and their supported vehicle applications are 
becoming more and more popular worldwide for their advantages 
to collision/violation warning and avoidance in vehicle systems. 
In US, the Vehicle Infrastructure Integration (VII) [1] project, 
which aims to create a nationwide enabling communication 
infrastructure by connecting vehicles and roadside infrastructures, 
has been initiated by the US Department of Transportation (DOT) 
and supported by many state DOTs and auto companies. VII 
contains three major function modules. On-board equipments are 
used to collect situational contexts, like the information of local 
and nearby vehicles, and provide driver interfaces; Road-side 
equipments can communicate with on-board equipments to 
exchange information based on DSRC protocols; and regional 
message switches send the information to remote end users that 
can process the data and send back control commands. The 
research and development of VII focuses on the research of 
DSRC standards, like IEEE 1609- 1, 2, 3, and 4, and development 
of vehicle and roadside equipments and applications, like signal 
violation warning and stop sign violation warning etc.  

In Japan, the National Police Agency is promoting the Next 
Generation Universal Traffic Management Systems (UTMS21) 
[4], which aim to create an environment-friendly and traffic-
oriented society to smooth traffic flow and avoid traffic accident. 
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Figure 2. Dynamic reconfiguration architecture: (a) single 
component-chain architecture in existing middleware, (b) 
multiple-component-chain architecture in MARCHES. 



It integrates eight subsystems for vehicle context gathering and 
management, intelligent vehicle control, responsibility to 
emergent situations. One of the most important subsystems in 
UTMS21 is Driving Safety Support System (DSSS) that not only 
studies and classifies the causes and solutions of traffic accidents, 
but also utilizes the latest techniques for context collection and 
collision prevention, like the danger zone avoidance control 
system, the unforeseeable collision warning system, the right-
turning vehicle-caused accident prevention system, and the 
pedestrian crossing support system. Advanced Cruise-Assist 
Highway Systems (AHS) [3] is another advanced VSC systems in 
the ITS field, which aims to reduce traffic accidents and 
congestion and reduce the operational work of drivers as well. 
AHS contains three themes. AHS-"i" (information) focuses on 
gathering contextual information like other vehicles, obstacles, 
and highway surface condition etc; AHS-"c" (control) focuses on 
vehicle control assistance; and AHS-"a" (automated cruise) 
focuses on providing fully automated driving. 

In Europe, the integrated project PReVENT [6] for preventive and 
active safety applications has been proposed to help drivers avoid 
critical situations in advance, or avoid accidents in the critical 
situations, or reduce the severity of accidents if they are not 
avoidable. There have been many advanced sensing, digital map 
and positioning, and wireless communication techniques 
developed and further integrated in dedicated demonstrator 
platforms for safety applications. The activities in PReVENT can 
be classified into vertical fields that target on the independent 
development of a single safety function, like the speed sensing 
function and control function, and horizontal fields that target on 
the interaction and integration of these functions to develop 
intelligent vehicle applications. Another VSC organization 
initiated by European vehicle manufacturers is C2CCC (the CAR 
2 CAR Communication Consortium) [5], which is dedicated to 
further increase of road traffic safety and efficiency. Different 
from the projects in US and Japan that target on DSRC 
techniques, C2CCC uses the standard IEEE 802.11 and Wireless 
ad-hoc network techniques for inter-vehicle communication and 
vehicle to roadside infrastructure communication. A list of active 
safety applications based on the car 2 car communications have 
been proposed to provide advanced driver assistance, user 
communications and information services. 

This work does not focus on the research of communication 
techniques or development of special vehicle applications. 
Instead, we introduce a middleware framework to fill the gap 
between them and improve the application affordability, 
flexibility and adaptability while satisfying their critical real-time 
requirements. 

2.2 Middleware techniques 
Middleware has been a critical technology for developing 
distributed applications because it can mask the heterogeneity of 
the underlying environment and provide an integrated service 
environment to simplify the task of programming and managing 
applications. It can be further separated into the multiple layers 
(shown in Fig. 3) to provide various functions for vehicle systems.  

Communication middleware focuses on integrating distributed 
computing systems to act as a unified resource to reduce the 
application development cost. Early stage middleware, like the 
Common Object Request Broker Architecture (CORBA) [10], the 

Distributed Component Object 
Model (DCOM) [11], and Java 
Remote Method Invocation 
(RMI) [12], builds on Remote 
Procedure Call (RPC) to 
abstract the low-level TCP/IP 
communication details and 
replace the communication 
interface with a local procedure 
call or function invocation. 
Unlike RPC-based middleware, 
Message Oriented Middleware 
(MOM) [15, 17], provides an 
asynchronous communication 
mechanism for distributed 
applications based on message 
exchanges. MOM improves the system flexibility and robustness 
as the change of one client does not require the change of other 
clients (called loose coupling). Further, the asynchronous 
communication improves the system efficiency by allowing the 
processing parallelism, in which the communication caller can 
continue processing regardless of the state of the messages and 
peer agents.  

Component middleware, normally based on a component model 
(e.g. CORBA Component Model (CCM) [35]), enables reusable 
service components to be organized, configured, and deployed to 
develop applications efficiently and robustly. A component is a 
service entity that exposes a set of interfaces, which components 
use to communicate with each other for collaboration, and 
attributes, which specify its parameters that can also be 
reconfigured at run-time via component metadata. Component 
middleware provides standards for object implementation and 
interaction so that it can support generic service components and 
then reduces the complexity of software upgrades and increases 
the reusability and flexibility of vehicle applications. Existing 
component middleware techniques contain both reusable common 
services, e.g. optimization of resource consumption (OSA+ [36], 
ACE [37]), configurability, (Zen [38], TAO [39]), and reusability 
(nORB [40]) etc, and domain-specific services, e.g. OSEK/VDX 
[41] for vehicle applications, and ARINC 653 for avionics.  

Adaptive and reflective middleware [42, 43] can inspect its 
internal representation at runtime and reconfigure its state and 
behavior by providing a set of meta-level interface or object for 
base-level implementation that handles the real service execution 
and operations. Open ORB [44] provides both structural reflection 
and behavioral reflection. The structural reflection supports 
functional components reconfiguration. It has two meta-models: 
the interface meta-model, which allows dynamically recover a 
component’s interfaces at run-time, and the architecture meta-
model, which provides access to the component architecture 
(Open ORB components are organized in a hierarchical way and a 
component may contains multiple sub-components). The 
behavioral reflection supports nonfunctional components 
reconfiguration. It enables the dynamic insertion of interceptors 
on a specific interface to introduce nonfunctional behaviors into 
the ORB, such as security checks and concurrency control etc. 
Dynamic TAO [45] is a reflective ORB based on a collection of 
component configurator. The domain configurator maintains the 
references of a TAOConfigurator and a set of servant 
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configurators. The TAOConfigurator can then inspect and 
dynamically change nonfunctional behaviors of the middleware.  

Context-aware reflective middleware actively measures the 
application interested contexts and adapts to them automatically 
and predicatively to meet the adaptability demands of vehicle 
applications. The classification and measurement of the context, 
which includes network awareness, device awareness, user 
awareness, application awareness, and environment awareness, 
has been studied in our previous work [31]. QuO [46] can monitor 
the application status at runtime and dynamically allocate QoS 
resources robustly based on the adaptive and reflective model to 
accommodate the rapidly changing environmental conditions and 
application requirements. However, similar with the Dynamic 
TAO, QuO does not consider the synchronization delay in the 
reconfiguration process while supposing that the reconfiguration 
has been constrained in safe conditions in advance.  

MobiPADS [13] is a client server based context-aware 
middleware that supports both middleware-layer (nonfunctional 
behaviors) and application-layer (functional behaviors) adaptation 
for mobile devices. It takes advantage of a communication 
channel for synchronization in a synchronous way each time the 
architecture is reconfigured. The reconfiguration process includes 
operation suspension, buffer clearance, and chain-structure 
modifications. Because the initializer of the synchronization has 
to be suspended until the system architecture of its own and other 
participants is reconfigured and the buffered data for previous 
architecture is cleared, the reconfiguration time is in a range of 
seconds or even more according to their experiments. CARISMA 
[14] employs a novel micro-economic approach that relies on a 
particular type of sealed-bid auction to handle the conflicts. The 
conflict resolution algorithm includes run-time conflict detection, 
solution set computation, and bids computation processes for each 
reconfiguration. However, the approach is still synchronous and 
inherits all the above disadvantages. Different from the existing 
context-aware reflective middleware frameworks that use the 
synchronous synchronization, MARCHES maintains multiple 
component chains and leverages the active message technique to 
realize the synchronization in an asynchronous way. According to 
the discussion in Section 3 and evaluation in Section 4, 
MARCHES can significantly reduce the reconfiguration time 
compared to existing context-aware reflective middleware. 

2.3 Active messages 
The concept of active messages was originally proposed for large-
scale multiprocessors to minimize inter-processor communication 
overhead and allow communication to overlap computation [26]. 
This concept has then been widely used in parallel and distributed 
computing systems to reduce communication overhead [27, 28]. 
Recently, it has been used in wireless sensor network research to 
avoid busy-waiting for data to arrive and overlap communication 
with other sensor activities [29]. This paper utilizes the active-
message concept for the first time to address the behavior 
synchronization problem of the vehicle middleware. 

3. System Architecture of MARCHES 
As shown in Fig. 4, MARCHES is located between the lower 
hardware-and-network layer and the upper application layer to 
monitor environments and support vehicle application adaptation. 
It is peer-to-peer middleware with one middleware agent per 

application in each host. Each MARCHES agent can be separated 
into a core layer and an operation layer. The core layer consists of 
eight function modules, which construct the adaptive and 
reflective framework for monitoring contexts and reconfiguring 
the system behaviors. Measurement tools and a hierarchical event 
interpreter deal with context measurements and evaluations by 
building hierarchical context events (sensors); a decision engine, a 
dynamic reconfigurator, and an XML-based script parser support 
the MARCHES reflection model and efficient reconfiguration; in 
addition, a communication channel for the inter-communication 
among peer agents, a distributed awareness manager for 
disseminating and synchronizing awareness results [31], and a 
component manager for supporting and managing MARECHES 
components are designed as surrounding services. 
The measurement tools are the lowest building blocks that 
monitor the dynamic environments and report the awareness 
results as the contextual information to be processed by the event 
sensors. The sensors and actuators, in addition to adaptation 
policies, are defined by application developers or users in a XML 
script file. There are two types of actuators: proactive and reactive 
ones, each of which contains a component chain and performs 
reconfiguration actions. The XML script parser parses the script 
file and constructs the sensors and proactive actuators to process 
local data. The reactive actuators are constructed through the 
synchronization process with peer agents to process the received 
data. Once a context triggers an event sensor, a corresponding 
proactive actuator will be activated by the reconfigurator to 
perform the reconfiguration actions.  
In the operation layer, various services are offered by software 
components that implement specific algorithms and protocols. 
There are two types of components in the operation layer: 
functional components (called marchlets) for performing vehicle 
communication and control, and context-awareness components 
(called marchtools) for measuring and evaluating situational 
contexts. Because we focus on improving the vehicle middleware 
efficiency in this research, we do not include such nonfunctional 
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components as the concurrency and security etc. and their 
reconfiguration, which are potentially supported by MARCHES.  

3.1 MARCHES Reflective Model 
MARCHES supports both component-level and system-level 
reflection. The component-level reflection deals with the content 
and behavior of a given component via the interface metamodel, 
which provides discovery of and access to the set of provided and 
required interfaces of the component. Based on the component-
level reflection, MARCHES supports standard reflective software 
components or other third party components in a cost-efficient 
manner, so that it is easily upgradeable to incorporate new 
techniques or services in its operation layer and meet the rapid 
progress of new algorithms and standards for vehicle applications. 
The system-level reflection deals with the structure and graph of 
the component connections via the architecture metamodel, which 
provides discovery of and operation to the current active actuator. 
The system-level reflection allows MARCHES to examine its 
internal states at run-time and dynamically reconfigure the 
application architecture to enhance its adaptability. 

3.1.1 MARCHES components and component-level 
reflection 
A MARCHES component is a function independent reflective 
element that provides an interface metaobject by which a 
component can read its own metadata, extract the metadata from 
the component (called reification), and use that metadata either to 
inform the component user or to modify the component’s 
behavior (called absorption). Metadata is information about the 
data—that is, information about the types, functions, code, and 
etc., which are stored along with a component. By using the 
interface metamodel and component-level reflection, MARCHES 
can examine the types in a component, create new types at 
runtime, interact with or instantiate the types, and dynamically 
invoke properties and methods on the instantiated objects [30] 
(called the late binding).  
To incorporate a new reflective component in MARCHES, users 
need to describe the types, interfaces, and other attributes of the 
component in a system script file by using our defined IDL 
(Interface Description Language), as shown in Fig. 5, so that the 
component can be identified and configured by MARCHES at 
runtime through the late binding. We have realized three methods 
to identify a MARCHES component for vehicle applications: the 
exclusive component name for a registered system component, 
the complete address for a local component, and the desired 
attributes for a registered component in the component manager. 
The component type is declared in the ctype part and the alias is 
the name of the component used in the adaptation-rule part of the 
script. The component can be specified by setting its parameters, 
which can also be reconfigured at runtime according to the 
adaptation rules. It also provides some interfaces (e.g. input and 
output interfaces). The connected input and output interfaces must 
support compatible event messages and their connections can also 
be reconfigured at runtime. 
There are two types of MARCHES components: reconfigurable 
functional components (marchlets) and extensible context-
awareness components (marchtools). The context-awareness 
components can be further classified into measurement tool 

components (named as awaretools) and user defined function 
components (named as awarefuncs) built above awaretools.  
Marchlets are the basic functional units to construct vehicle 
applications. MARCHES supports the publish/subscribe model 
for communication and each marchlet provides some output and 
input interfaces for component assembly. The output interface of 
a marchlet can be subscribed by the message-compatible input 
interfaces of other marchlets and publish messages to them.  
Measurement tools, which measure and predict real-time context 
awareness e.g. network conditions for vehicle communication and 
road situations for action replan in MARCHES, are realized as 
reflective components (called awaretools) to facilitate the reuse 
and extension of existing measurement tools. The context 
awareness research has been addressed in our previous work [31]. 
Awaretools act as the lowest event sources in the event tree that 
can be subscribed by higher level event nodes and organized in a 
hierarchical way to build event sensors.  
MARCHES also supports another type of reflective component—
awarefunc to assist the extension of awaretools. An awarefunc 
provides not only output interfaces to accept the subscription 
from, and notify higher level sensor nodes, but also some input 
interfaces to subscribe to awaretools and process their raw data as 
input parameters. Thus it supports user defined functions for pre-
processing the measurement results of awaretools, e.g. getting the 
average value of the bandwidth in the last 5 minutes. 
To better maintain and update MARCHES components, we have 
proposed a distributed service module, called the Component 
Manager (CM) that accepts component registration and provides 
such services to vehicle applications as component identification, 
evaluation, migration, and virtual connection. So far we have 
focused our concern on the component employment and realized 
component identification function according to a user-provided 
component name and version properties; thus we leave the 
component evaluation [32], migration [33], and virtual connection 
[34] functions for further work.  

<component cid="2002">
<addr> D:\Masslets\JPEGCompress.dll </addr>
<name> Masslets.Compress.JPEGCompress </name>
<ctype> Masslet </ctype>
<alias> COMPRESS </alias>
<param pid="001">
<name> SetCompressQuality </name>
<vtype> Int32 </vtype>
<value> 50 </value>

</param>
<interface iid=“001”>
<name> PtrDataInput </name>
<itype> Input </name>
<Message> PDIBEventArgs </Message>

</interface>
<interface iid=“002”>
<name> DataOutput </name>
<itype> Output </name>
<Message> JPEGEventArgs </Message>

</interface>
</component>

 
Figure 5. The component declaration in MARCHES 



3.1.2 MARCHES Reconfigurator and System-level 
Reflection 
MARHES reconfigurator contains multiple actuators and provides 
interfaces to manipulate the actuators so that the application 
behaviors can be reconfigured. The actuators are designed as 
reflective components to support the MARCHES system-level 
reflection. Each actuator (see Fig 6 (a)) contains a component 
chain (or graph) for processing application data, a type library for 
browsing the component types, and a meta-interface presented in 
Fig 6 (b) for its C# code. The meta-interface provides access to its 
underlying meta-information and internal states (reification), 
including the structure and graph of the component connections 
and the actuator status (active/inactive) etc. By accessing the 
meta-interface, the reconfigurator can change the actuator meta-
information that leads to a change of the actuator implementation 
(absorption), including the structure modification of component 
connections and the switch of active and inactive actuators.  

3.2 MARCHES Efficient Reconfiguration 
For a distributed adaptive system, a reconfiguration process 
consists of two steps: the local behavior change that is triggered 
actively by the context changes and the distributed behavior 
synchronization that is triggered reactively to synchronize local 

behaviors with the changed behaviors of other distributed 
programs for safe reconfiguration. 

3.2.1 Local behavior reconfiguration 
In traditional reflective middleware, there is only one component 
chain (or graph) in each middleware agent. The reconfiguration 
process is then to modify the chain (or graph) structure. However, 
due to the operation suspension and synchronous synchronization 
during the reconfiguration process, both the overhead and delay 
are too large to be tolerable for real-time vehicle applications. 
By contrast, MARCHES supports multiple component chains as 
shown in Fig. 2, each of which is located in an actuator. Every 
actuator is hooked to an event sensor that is described in the same 
policy. There is one and only one actuator active at any time and 
only the component chain in the active actuator processes the 
application data. To reduce the resource consumption by multiple 
chains, each actuator only maintains a chain of references, which 
point to marchlet instances, and a customized parameter list for 
each reference. When contexts change and satisfy a new sensor, 
the sensor will notify the decision engine for reconfiguration by 
switching active and inactive actuators. That is, the current active 
actuator is deactivated by suspending its operations as it reaches a 
safe state, where the reconfiguration can be safely performed, 
storing its run-time status, and disconnecting the component 
chain; the target actuator is then activated by connecting its 
components, restoring the run-time status, and resuming its 
operations. 

3.2.2 Distributed behavior synchronization 
Because each distributed middleware agent has its own executive 
component chain in the active actuator, behavior synchronization 
is a crucial service of the middleware to achieve behavior 
consistency for vehicle applications in the reconfigurations. We 
have designed and implemented an efficient asynchronous 
synchronization protocol in MARCHES based on active messages 
(the terminologies of synchronous and asynchronous is borrowed 
from the synchronous and asynchronous communication model in 
RPC-based middleware and MOM depicted in the related work 
section). The basic idea of the proposed asynchronous protocol is 
that every middleware agent constructs the reactive actuators for 
all connected agents in the initialization phase, and selects one of 
them to process each received application layer data packet 
according to the active message header attached in the packet. 
The synchronization protocol has five initialization steps, such as 
those shown in Fig. 7.  

 In the middleware initialization phase, proactive actuators 
of each agent are constructed based on a user-defined 
script file. Each proactive actuator is also associated with 
a middleware-assigned unique index and the architecture-
information of an optional reactive actuator.  

 The middleware agent then sends a synchronization 
request packet to each distributed peer agent. The packet 
contains the indices of the proactive actuators and the 
architecture-information of the reactive actuators. 

 After receiving the synchronization request packet, the 
peer agent constructs the reactive actuators according to 
the packet information, each of which is associated with 
the IP address of the packet sender and a middleware-
assigned unique index as well. 

The actuator 
component

Component chain 
or graph

Type library

Meta 
Interface
Comm. 
Interfaces

Other 
Interfaces

 
(a) 

interface IMetaActuator
{

componentList get_components();
connectionList get_connections();
bool set_components(componentList compList);
bool set_connections(connectionList connList);

bool add_component(CMarchletObj marchlet);
bool remove_component(string marchlet);

bool connect_all_components();
bool disconnect_all_components();

bool connect_components(string senderObj, string senderInterf,
string receiverObj,  string receiverInterf);

bool disconnect_components(string senderObj, string senderInterf,
string receiverObj, string receiverInterf);

Object get_component_parameter(string comp,  string param);
bool set_component_parameter(string comp, string param, Object value);

EnumActuatorStatus get_active_status();
bool activate();
bool deactivate();
……

}  
(b) 

Figure 6. (a) The MARCHES actuator architecture and (b) its 
meta-interface 



 The receiver or the peer agent replys the sender a 
synchronization response packet that contains a set of 
index pairs, each of which contains an index of the 
proactive actuator and the index of the reactive actuator. 

 The sender agent replaces the architecture-information of 
each reactive actuator with its corresponding index 
received from the synchronization response packet.  

The above-mentioned initialization is a one-time process for each 
peer agent. Then the middleware agent appends the index of the 
reactive actuator, which corresponds to the current active 
actuator, to the payload of each data packet. The peer agent 
receiving the data packet activates the reactive actuator indexed 
by the received index to process the data packet correctly. 
The active message based asynchronous synchronization protocol 
has four advantages: low overhead, short delay, high efficiency, 
and better robustness. In general, only the index of the reactive 
actuator needs to be stored in the active message header for each 
data packet. By using the asynchronous method, the system does 
not need to be paused in the synchronization process, which 
dramatically reduces the reconfiguration time. Further, based on 
the information in the active message header, a peer agent can 
always process the received packets by choosing the correct 
reactive actuator and then no buffered clearance is needed in the 
reconfiguration process, which makes the reconfiguration by our 
middleware efficient. Moreover, once the reactive actuators are 
constructed in the system initialization phase, the local agent 
reconfiguration does not require the availability of other agents 
and then is not affected by the network condition or the capacity 
of other agents. Thus the robustness of the application is 
improved and the communication overhead is reduced. 
MARCHES is rule-based reflective middleware, in which all 
adaptation rules (or policies) are predefined and applications then 
adapt to contexts according to the rules. However, it may be 
difficult to predict all the desired policies in advance and users 
may need to change the policies based on the vehicle runtime 
status. MARCHES provides a re-synchronization method to 
support the runtime modification of adaption policies. That is, the 

agent suspends its operations, clears data buffer, re-synchronizes 
the modified policies with peer agents, and resumes its operations.  

3.3 MARCHES Event Model 
Situational contexts are very important information in vehicle 
applications for either drivers or autonomous control systems to 
avoid traffic accidents, especially in complicated environments 
like cross streets and crowd highway lanes etc. Existing context-
aware middleware only supports simple context monitoring or the 
combination of simple contexts. To improve the expressive ability 
and comprehensiveness for context evaluation, a binary tree based 
hierarchical event notification model is proposed (see Fig. 8), in 
which several events can be organized and integrated as a binary 
tree structure to construct an event sensor to monitor and process 
interested contexts and trigger subscribed actuators at runtime for 
reconfiguration when the conditions of the sensor are satisfied. 
MARCHES event model supports both context expressions and 
user-defined functions by applying awarefunc components. To 
enhance the efficiency of system reconfiguration, MARCHES 
contains multiple event sensors for supporting multiple actuators, 
so that each actuator can subscribe to dedicated event sensor.   
In the constructed event tree, each event node contains a 
conditioner, a left hand side (LHS), and a right hand side (RHS). 
There are two types of conditioners: the compare conditioner and 
the Boolean conditioner that do compare and Boolean operations 
on LHS and RHS respectively. The LHS and RHS can subscribe 
to the conditioner of a lower-layer event node or an event source, 
and notify the conditioner when the lower-layer contexts or 
operation results are changed. The event source can be a constant 
value, single context awareness, or an awareness expression that 
is also built on a binary tree structure, in which each node has an 
operator, a LHS, and a RHS. Therefore, all the contexts are 
organized in a hierarchical way to form a sensor. The event nodes 
in sensors communicate based on the publish/subscribe model. An 
upper-layer conditioner or an actuator can subscribe to an event 
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Figure 7. The synchronization process in MARCHES 
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node or a sensor as a listener. Thus the sensor can monitor and 
process the awareness results according to the event tree, and 
eventually report interested events to the subscribed actuator and 
trigger the application reconfiguration.  
To improve the efficiency of sensors, the hierarchical event tree is 
constructed according to the Modified Directed Acyclic Graph 
(MDAG). That is, before creating a new event node, check 
whether an identical node or an inverse node already exists. Event 
node a is defined as the inverse node of b if a and b have the same 
event source and comparison value, but inverse comparison 
operator, e.g. the inverse event of “Min(AVI_CPU, 10) < 1.0” is 
“Min(AVI_CPU, 10) 1.0”.  
For various application developers or end users, to use the event 
model to identify their interested contexts, they can declare the 
sensors they want to specify in the script file as shown in Fig. 9 
(a). The example means when the average bandwidth during the 
last 5 seconds is greater than 10Mbps and less than 20Mbps, the 
sensor notifies its subscribed actuators. To facilitate the 
configuration of the sensor script, we developed a tool, which is 
part of the script development tool that is discussed in section 3.4, 
to transfer the advanced language to the script language according 
to the operator mapping (Fig. 9 (b)). Fig. 9 (c) is the advanced 
language example of Fig. 9 (a)  

3.4 MARCHES Description Language and 
XML Script file 
To facilitate the development of MARCHES supported vehicle 
applications, an XML-based system script file is provided for 
application developers or end users to customize the application 
configuration and adaptation policies. In particular, the script file 
can be divided into a declaration part and an adaptation-rule part 
(see Fig. 10). The declaration part declares all masslets and 
masstools – components used in a local program and middleware 
agent. The detail of a component declaration is shown in Fig. 5. 
Based on the declaration, the MARCHES agent loads and 

instantiates the components by the component-level reflection, 
and initializes them with the provided parameters.  
The adaptation-rule part contains adaptation policies and each 
policy can be further separated into three sections: a sensor, a 
proactive actuator, and an optional reactive actuator. The sensor 
section can be parsed by the event interpreter to build an event 
sensor that monitors interested contexts and accepts the 
subscription of the proactive actuator declared in the proactive 
actuator section. The proactive actuator section describes the 
system architecture-information that is used to update the actuator 
internal states by the reconfigurator when it performs 
reconfiguration actions. Therefore, the system behaviors can be 
dynamically adapted to the context changes through the 
MARCHES system-level and component-level reflection 
(respectively, architecture reconfiguration and parameter tuning). 
The reactive actuator section describes the architecture-
information of an actuator in peer agents that processes the 
received data from the proactive actuator, so that the behaviors of 
the proactive and reactive actuators can be synchronized in 
distributed vehicle systems.  
For the image transmission example discussed above, the 
component chains in proactive actuators prepare and send video 
frames and the chains in reactive actuators receive and display the 
frames. There are four marchlets (Grab, Compress, Decompress, 
and Display components), two awaretools (available bandwidth 
and CPU measurement tools), and two awarefuns (average and 
minimum functions). The application behavior can be 
dynamically reconfigured by using or not using the Compress 
marchlet according to the two adaptation polices, e.g. the first 
policy means that when the average available bandwidth in the 
last 5 seconds is less than 10Mbps, the sensor notifies the 
reconfigurator to active the proactive-actuator that connects the 
Grab and the Compress components for reconfiguration.  

<sensor>
<event>
<otype> And </otype>

<lhs>
<event>
<otype> GT </otype>
<lhs> 
<expr> Ave(AVI_BW, 5) </expr> 

</lhs>
<rhs> 
<expr> 10 </expr> 

</rhs>
</event>
</lhs>

<rhs>
<event>
<otype> LT </otype>
<lhs> 
<expr> Ave(AVI_BW, 5) </expr>

</lhs>
<rhs> 
<expr> 20 </expr> 

</rhs>
</event>
</rhs>
</event>
<sensor>

Ave(AVI_BW, 5)>10 && 
Ave(AVI_BW, 5)<20

==EQ

<>NE

<=LE

<LT

>=GE

>GT

Development 
Operator

Script 
Operator

(a) (c)

(b)

 
Figure 9. A sensor declaration example in the XML script file: 
(a) XML-based sensor script example, (b) Script operator to 
development operator mapping, (c) user development example

<Masslets>
...

</Masslets>

<MassTools>
...

</MassTools>

<Rules>
<rule>
<sensor>
...
<sensor>

<Actuator type=“proactive” sync=“Async”> 
<SetParam>
COMPRESS.CompressQuality = 70;

</SetParam>
<SetArch>
Grab.PtrDataOutput -> COMPRESS.PtrDataInput;
COMPRESS.DataOutput -> Socket;
Grab.Start;

</SetArch>
</Actuator>

<Actuator type=“reactive” sync=“Async”>
<SetArch>
Socket -> DECOMPRESS.DataInput;
DECOMPRESS.DataOutput -> DISPLAY.DataInput;

</SetArch>
</Actuator>
</rule>
...
</Rules>  

Figure 10. An example of the adaptation rule script. 



To facilitate interactive configuration, we developed an XML-
script Development Tool. As shown in Fig. 11, the tool is a C# 
graphical user interface that lets users manipulate both the 
component and policy configuration and runtime reconfiguration 
interactively. The tool supports the advanced language to describe 
event sensors and establishes a connection to the MARCHES 
middleware system to help the users re-synchronize the local 
agent with peer agents by using the mouse when the adaptation 
policies are reconfigured at run-time. 

4. Implementation and Performance 
Evaluation 
MARCHES aims at improving the reconfiguration efficiency of 
traditional context-aware reflective middleware and supporting 
real-time vehicle applications in dynamic environments by using 
active messages to coordinate reconfigured application behaviors 
asynchronously. However, the reconfiguration process introduces 
some performance cost such as extra resource consumptions to 
maintain the multiple chains. Therefore it is important to check 
the feasibility and efficiency of using MARCHES. We have 
analyzed the robustness of MARCHES in the above sections, and 
we evaluate its performance cost and benefits in this section in 
terms of the memory footprint, reconfiguration time, and 
scalability through benchmark applications.  

In our experiments, we have implemented the MARCHES system 
in C# for both the Windows XP system (WXP) and the Windows 
Mobile 5 system (WM5) using visual studio 2005 and encoded 
the system script file using XML (eXtensible Markup Language). 
The benchmark and application testbed consists of two laptops 
(Thinkpad-X60: Intel T2300 1.66GHz, 512MB PC2-5300, and 
Windows XP), two PDAs (Dell x51v: Intel XScale 624MHz, 
64MB, and WM5) and six desktops (Dell dimension 4550: 
Pentium 4 2.66GHz, 512MB) to simulate vehicle and roadside 
environments. The PDA hardware configuration is compatible 
with that of most on-board GPS devices and the laptop and 
desktop configuration is similar with that of the roadside and 
remote base station devices. We test the memory footprint, 

reconfiguration time in a local setting and evaluate the system 
scalability in a distributed setting on both PCs and PDAs. 

4.1 Memory Footprint and Active Message 
Overhead 
In this experiment, we evaluate the local storage size and the run-
time memory consumptions of MARCHES system, components 
and actuators. We utilize the C# serialization function to serialize 
MARCHES and system objects and measure their run-time 
memory usage, like the socket and XML-parser objects. 
Serialization means that objects are marshaled by value, that is, 
all their various member data are written out to the stream as a 
series of bytes. Therefore, we can use the length of the stream as 
the memory consumption. 

Table 1.  MARCHES middleware and resource consumption. 

Windows XP system Windows Mobile 5 

Components Local 
file size 

Run-time 
memory 

usage 

Local 
file size

Run-time 
memory 

usage 
Middleware 

(MARCHES.dll) 56KB 896KB  46KB 123KB 

Empty Masslet 
(eMasslet.dll) 4KB 139Byte 4KB 74Byte 

Simple Masslet 
(sMasslet.dll) 16KB 356Byte 5KB 147Byte 

Simple Masstool 
(sMassTool.dll) 16KB 279Byte 4KB 94Byte 

 

The local file size and run-time memory usage of MARCHES 
middleware and components (marchlets or awaretools) are shown 
in table 1 for both WXP and WM5 respectively. The run-time 
memory usage of the middleware is measured after the system 
initialization and before loading and instantiating any 
components. The empty masslet is an empty reflect component 
without containing any application-specific methods and variables 

 
(a) Component declaration     (b) Adaptation policies 

 
Figure 11. The MARCHES script file development tool 



and the simple masslet containing one input interface, one output 
interface, and 5 double-type parameters. Although we use very 
similar source code for both WXP and WM5, the run-time 
memory consumption is much different due to the mobile 
platform code optimization. 

 

Table 2.  Parameter notation of resource consumption. 

Notation Parameter Default 

pijk 
The size of parameter k for marchlet 

j in acutator i  10 bytes 

lij 
The reference and name size of 

marchlet j in actuator i  12 bytes 

ai The index size of actuator i 8 bytes 
 

Because MARCHES contains multiple actuators, each of which 
consists of a complete chain of components, it is important to 
analyze the overhead of the multiple actuators. Table 2 describes 
the notation used in the analysis of resource consumption for 
maintaining multiple actuators. The memory consumption R is 
then expressed as: 

∑ ∑ ∑ ⎟⎟
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 . 
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For the MARCHES agent in our example that contains 2 actuators 
as described in Fig. 10, the resource consumption is 102 bytes. 
For a more complicated MARCHES agent that contains 5 
actuators, 10 marchlets for each actuator, and 10 parameters for 
each marchlets, the resource consumption is 5640 bytes (≈ 5.5 
KB) that is still fairly small for most on-board vehicle devices 
hosting megabits or gigabits memories. 

The overhead of the one-time synchronization initialization 
process includes the synchronization request (architecture-
information of the reactive actuators) and synchronization 
response (index pairs) packets that are much smaller than the 
payload size of a data packet. After the initialization, only an 
active message header is appended to each data packet to store the 
index of a reactive actuator. 

4.2 Time Efficiency (middleware performance 
in a local setting) 
The major goal of MARCHES is to improve middleware 
efficiency. In this section, we evaluate comprehensive time 
efficiency of MARCHES system according to some 
benchmarking applications, including: component loading time, 
reconfiguration time, event sensor response time, and message 
exchange time.  

Table 3.  Benchmarking MARCHES component loading time. 

 Comp. # 1 10 100 1000 10000 
Ave. (ms) 0.163553 0.863828 8.95057983.71129875.7631
Standard 
Dev. (ms) 0.003973 0.015096 0.1883311.0919532.016096PC 

Confidence 
Int. (α=0.5) 0.000893 0.003394 0.0423420.2455040.453279

PDA Ave. (ms) 1.693265 190.6756 2211.64724387.93 

Standard 
Dev. (ms) 0.024551 0.382868 2.09783561.17155 

Confidence 
Int. (α=0.5) 0.00552 0.08608 0.47165613.75319 

 
 

4.2.1 Component loading time 
The component loading time is defined as the time period of 
loading a masslet, checking its type, and instantiating the object 
based on the parameters encoded in the script file. The maximum 
number of component files stored in a PDA folder is 1000. All the 
data are calculated based on 10 repeated tests, as shown in table 3. 

4.2.2 Behavior reconfiguration time 
By using active messages, MARCHES reconfiguration is realized 
by switching component chains, which disconnects the current 
component chain in the active actuator and connects the 
component chain of the triggered actuator by an event sensor. 
Thus we have: 

.Trec = Tdisc + Tconn (2)

The component connection time and disconnection time in our 
experiment are shown in table 4 and 5. 

Table 4.  Benchmarking MARCHES component connc. time. 

 Comp. # 1 10 100 1000 10000 

Ave. (ms) 0.039887 0.351814 4.413969 40.97256 415.5276
Standard 
Dev. (ms) 0.000271 0.023946 0.771114 0.658318 6.238717PC

Confidence 
Int. (α=0.5) 6.1E-05 0.005384 0.173369 0.14801 1.40265

Ave. (ms) 0.564239 3.717504 41.76759 411.3645   
Standard 
Dev. (ms) 0.006986 0.025047 1.066252 25.64663   

PDA
Confidence 
Int. (α=0.5) 0.001571 0.005631 0.239725 5.766131   

 

Table 5.  Benchmarking MARCHES component discon. time. 

 Comp. # 1 10 100 1000 10000 
Ave. (ms) 0.041129 0.361033 4.450224 41.90418 421.084
Standard 
Dev. (ms) 0.001974 0.029886 1.028386 0.656612 3.402015PC

Confidence 
Int. (α=0.5) 0.000444 0.006719 0.231212 0.147626 0.764875

Ave. (ms) 0.533162 3.836 44.56978 448.623   
Standard 
Dev. (ms) 0.009623 0.018377 2.366826 34.49798   

PDA
Confidence 
Int. (α=0.5) 0.002164 0.004132 0.532133 7.756178  

 

The experimental results demonstrate that the architecture 
reconfiguration time is in the range of hundreds of microseconds 
when the middleware needs to change 10 components for 
reconfiguration, and is several milliseconds for changes of 10,000 
component connections. Further, the reconfiguration time in 



MARCHES is only determined by local hardware resources so 
that the time is very stable. By contrast, the reconfiguration time 
of traditional middleware systems is highly related with network 
conditions as they use synchronous synchronization protocols. 
For example, MobiPADS takes 10s for 5 component deletion and 
5 component addition operations when the bandwidth is 20kbit/s 
and 3s for the same operations when bandwidth is 1Mbits/s 
according to their experimental results [13]. 

4.2.3 Event sensor notification time 
Event sensor notification time is another important metric to 
evaluate the system responsiveness to environments. To evaluate 
the infection of the event structure to the notification time, we test 
the time based on a linear tree mode, where there is only one 
event source in each level, and a binary tree mode, where 
different awaretools are constructed to a full binary tree. 
Therefore, the number of simple event sources (awaretools) used 
in the linear tree mode is a constant 1, and the low level 
composite event is used as the high level event source. The 
number of simple event source used in the binary tree mode is 
related with the depth of the tree, and we have Ntools  = 2n where n 
is the event-tree level. The test results are shown in table 6 and 7. 

Table 6. Benchmarking linear tree event notification time 

 Level # 2 5 10 15 100 

Ave. (ms) 0.00596  0.006115 0.006373 0.006674 0.01164
Standard 
Dev. (ms) 0.000279 0.000168 0.000286 0.000381 0.00152PC 
Confidence 
Int.  (α=0.5) 6.28E-05 3.77E-05 6.42E-05 8.57E-05 0.00034

Ave. (ms) 0.104376 0.09494  0.109778 0.116957 0.51374
Standard 
Dev. (ms) 0.000894 0.004208 0.005677 0.006546 0.00863PDA 
Confidence 
Int. (α=0.5) 0.000201 0.000946 0.001276 0.001472 0.00194

 
Table 7. Benchmarking binary tree event notification time 

 Level # 2 5 10 15 

Ave. (ms) 0.00590  0.00621 0.006736 0.01288 
Standard 
Dev. (ms) 0.000218 0.000305 0.000168 0.00267 PC 
Confidence 
Int.  (α=0.5) 4.91E-05 6.87E-05 3.77E-05 0.0006 

Ave. (ms) 0.085880 0.092308 0.116889 0.145231
Standard 
Dev. (ms) 0.001146 0.000985 0.005108 0.008006PDA 
Confidence 
Int. (α=0.5) 0.000258 0.000221 0.001148 0.0018 

 

From the results, we can see that the event notification time is 
much smaller than the architecture change time since all the event 
notifications occur in the same thread through messages. Further, 
the notification time is only related with the level of the 
hierarchical event tree, and not affected much by the tree 
structure. This is because an event source only notifies the 
subscribed upper layer event listeners, which creates a shortest 
message path from the simple event source located in the lowest 

level to the actuator and the path length is equal to the depth of 
the tree. 

4.2.4 Message exchange time 
MARCHES belongs to MOM and uses the publish/subscribe 
communication model. Message exchange time is defined as the 
time period between the time when the application data are input 
to the first marchlet and the time when the data are output from 
the last marchlet after they are processed by all marchlets of the 
active actuator. It stands for the communication efficiency of 
MARCHES. In this experiment, we only consider the scenario 
that all marchlets are located in the local agent. To support the 
distributed component communication, we can either migrate 
remote components to the local host or use RPC for remote 
communication, which belong to our future work. From the 
results in table 8, we observe that the time is just several 
milliseconds for message exchanges through 10000 components 
in a PC and 1000 components in a PDA, which is fairly small 
compared to the time for application data processing. 

Table 8. Benchmarking MARCHES message exchange time. 

 Comp # 1 10 100 1000 10000 

Ave. (ms) 0.001397 0.001583 0.004656 0.032029 1.423148
Standard 
Dev. (ms) 0 0.00014 0.00014 0.00073 0.00433 PC 
Confidence 
Int. (α=0.5) 0 3.14E-05 3.14E-05 0.000164 0.000973

Ave. (ms) 0.01535 0.018769 0.080308 1.466872   
Standard 
Dev. (ms) 0.000447 0.001131 0.001359 0.00519   PDA
Confidence 
Int.l (α=0.5) 0.000101 0.000254 0.000305 0.001167   

 

4.3 Scalability (middleware performance in a 
distributed setting) 
In MARCHES, a middleware agent maintains not only local 
proactive actuators, but also reactive actuators built for remote 
peer agents through the synchronization. Thus, the memory 
consumption is closely related with application scale. According 
to (1), the memory consumption R for a distributed vehicle 
applications is then modified as: 

( )∑=
t

tRR  . (3) 

where t is the index of peer middleware agents.  

For example, if a vehicle application has 10 distributed programs 
deployed in vehicles and roadside infrastructure, each program 
contains 5 proactive actuators, 5 reactive actuators, each actuator 
has 10 marchlets, and each marchlet has 10 parameters, and if we 
use the default value setting in table 2, the memory consumption 
of each program is 5640 bytes × 10 (≈ 55 KB), which is still 
relatively small to most vehicle devices, like GPS. 

5. Conclusion 
In this paper, we have described a context-aware reflective 
middleware framework called MARCHES to support time-critical 



adaptive vehicle systems. The overall objective of MARCHES is 
to improve the reconfiguration efficiency that has been realized 
by proposing a new adaptation structure of multiple component 
chains and a novel synchronization protocol using active 
messages to coordinate reconfigured behaviors asynchronously. 
Based on the architecture, MARCHES actuators perform 
reconfiguration actions by switching active and inactive 
component chains, which can reduce the local behavior change 
time compared to the traditional reconfiguration method of 
modifying the single chain architecture. Further, the asynchronous 
synchronization protocol dramatically reduces the reconfiguration 
time by eliminating the operation suspension and buffer clearance 
delays in the reconfiguration process in contrast to the traditional 
synchronous synchronization protocols in existing context-aware 
reflective middleware systems. Besides improving the efficiency, 
MARCHES offers some other benefits, including: (1) both 
component level and system level reflection for supporting the 
development of generic context-aware vehicle applications; (2) a 
binary tree based hierarchical event notification model for 
building efficient and comprehensive context-awareness sensors; 
and (3) an architecture-level description language that describes 
components, event sensors, actuators, and adaptation policies and 
a system-script development tool that facilitates the development 
of vehicle applications.  

We have implemented and evaluated MARCHES in benchmark 
applications. The complete implementation of MARCHES and 
the applications allows us to test the memory footprint, time 
efficiency, robustness, and scalability of the middleware in 
vehicle and roadside environments, and gain insights into the 
adaptive and reflective middleware system design and behavior 
reconfigurations. The experiment results and analysis demonstrate 
that (i) the reconfiguration time in traditional adaptive and 
reflective middleware has been reduced by several magnitudes 
from seconds to hundreds of microseconds, (ii) the extra costs 
introduced by the multi-actuator architecture in MARCHES are 
extremely low comparing the hardware resources of vehicle 
devices, and (iii) the robustness and scalability are improved as 
well in MARCHES compared to traditional middleware.  

The experiment results we have achieved so far are very positive, 
but there are some unexplored issues in MARCHES for future 
vehicle applications, which will be our future work. 

 The component evaluation, identification, and migrations 
in the proposed component manager, 

 The runtime reconfiguration of nonfunctional behaviors 
for complex vehicle systems, like the security strategies, 
communication styles, and routing protocols in mobile ad-
hoc networks, 

 The safe adaptation issue in behavior reconfiguration, 
especially when the behavior is related with history 
information, and 

 The comprehensive deployment of MARCHES in real 
vehicle applications and experimental evaluations. 
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