
Abstract- In this paper, we present an efficient sensor data 
compression process for civil infrastructure health monitoring 
applications. It integrates lifting scheme wavelet transform 
(LSWT) and distributed source coding (DSC), which can 
reduce the raw data size by 1:27 to 1:80 while having a minor 
effect on the modal parameters identified from the sensor data. 
We have compared our algorithms with other data compression 
algorithms for structural health monitoring. Results show that 
our algorithms can achieve 80% ~ 100% higher compression 
ratios with the same signal-restoration quality.  

I. INTRODUCTION 
Civil infrastructure systems are critical to the nation’s 

economic growth and public safety. Sensor networking 
technologies show great potential in monitoring fields since 
they enable dense in situ sensing and simplify deployment of 
instrumentation. Therefore, wireless sensor networks (WSNs) 
are considered vital to the functioning of structural health 
monitoring systems. A crucial practical issue arising from 
the full-scale implementation of WSNs is the sensor data 
compression. Large volumes of sensor data generated will 
make the data transmission between sensor nodes and a 
remote data acquisition center a very challenging task, 
especially given the limited power and bandwidth of 
currently available wireless sensors. Data compression 
facilitates power conservation of WSNs since the energy of a 
sensor node is consumed primarily by wireless 
communications [1].  

Data compression has been used to reduce the redundancy 
of the raw data. In a dense sensor network, the redundancy 
exists in both data collected at individual sensor node which 
is called local redundancy and data obtained from correlated 
sensor nodes called distributed redundancy. Classical data 
compression techniques [7], which involve transform, 
quantization and encoding, can reduce the local redundancy. 
Due to the nature of distributed sensor deployment in WSNs, 
an appealing technology for reducing distributed redundancy 
is DSC [3]. DSC refers to the compression of multiple 
correlated sensor outputs without communication between 
sensor nodes: sensor data is encoded locally according to a 
predefined correlation and decoded at the remote sink based 
on the side information. 

For the implementation of DSC in WSNs, one of the 
requirements is that the correlation is well known by each 
sensor node and sink. Most of existing DSC algorithms take 
the correlation in time or space domain that constraints 
DSC’s implementation only for smooth (low frequency) 
signal processing. For high frequency signal, the correlation 

is hard to be found duo to the high frequency noise pollution. 
In the structural health monitoring applications, the collected 
raw vibration sample data consists of both high frequency 
component, which is induced by high sample frequency 
(50Hz) and noise, and low frequency component, which is 
our primary interest in because it contains the key 
information of structure health menace [5]. 

In this paper, we describe a constructive algorithmic 
framework that supports DSC for high- and low-frequency 
signal compression in WSNs. To separate the low frequency 
component from the high frequency component, and strength 
the correlation among distributed sensor data, LSWT is used 
to preprocess the original data for signal decomposition and 
noise deduction. LSWT is better than traditional transforms 
and suitable for WSNs because 1) it is more efficient than 
FFT or DCT, 2) the transformed data supports time domain 
analysis, and 3) it supports multi-scale analysis and integer 
to integer mapping. After the LSWT, scalar quantization is 
used to reduce the individual redundancy. And last, the low 
frequency component of the sensor data can be processed by 
DSC to reduce the distributed redundancy. To the best of our 
knowledge, it is the first time that the LSWT and DSC are 
employed for vibration data compression, which achieves a 
higher compression ratio than the classical compression 
technique [5] while obtain the same data quality. 

II. RELATED WORK 
The problem of distributed data compression and data 

aggregation in sensor networks have led to new research 
challenges in networking, information theory and algorithm. 
In [2], Slepian and Wolf have theoretically shown that 
separate encoding (with increased complexity at the joint 
decoder) is as efficient as joint encoding for lossless 
compression. Similar results were obtained by Wyner and 
Ziv with regard to lossy coding of joint Gaussian sources. 
Currently, DSC is an active research area – more than 30 
years after Slepian and Wolf laid the theoretical foundation. 
S.S. Pradhan et al. [3] provide a constructive practical 
framework based on algebraic trellis codes dubbed as 
Distributed Source Coding Using Syndromes (DISCUS). 
They address the problem of compressing correlated 
distributed sources. They also discuss the rate loss from the 
DISCUS which is separated into source coding loss and 
channel coding loss.  

Although DSC has been implemented successfully in 
some sensor network scenarios [3][8], most of them are 
based on time or space domain correlation. These algorithms 
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work well only for low frequency signal. In our application, 
the sample frequency is 50Hz, making it difficult to decide 
the correlation of the sensor data as traditional DSC 
compression algorithms duo to noise pollution. In this paper, 
we apply DSC in frequency domain, and the proposed 
algorithm is suitable for both high- and low- frequency 
sensor data. In our work, the original data is decomposed 
into the low frequency component and the high frequency 
component by LSWT. Scalar quantization is then utilized to 
treat each input symbol separately in producing the output to 
reduce the noise and strengthen the correlation. This 
algorithm can achieve much higher compression ratio that 
another vibration data compression algorithm [5] with 
favorable signal-restoration quality. 

There has been some implementations of LSWT in the 
structure health monitoring system based on WSNs [4][5]. 
Both of them utilized the LSWT to compress vibration data. 
Although their methods successfully reduced the high 
frequency information and achieved a good compression 
performance, e.g. a compression ratio of 1:14 in [5], they 
only compressed the individual data in every single sensor 
node instead of reducing the redundancy of distributed 
source data. In our algorithms, we not only compress the 
data generated by the individual source, but also consider the 
correlation of data from neighbor nodes. Experiment results 
indicate that our proposed algorithms can achieve a higher 
compression ratio while attain the same signal to noise ratio 
as theirs because DSC is a lossless algorithm. 

III. DISTRIBUTED SOURCE CODING AND LIFTING SCHEME 
WAVELET TRANSFORM 

A. Distributed Source Coding 
When DSC is implemented in WSNs, the correlated 

sensor nodes send their encoded data to the base station (sink) 
for joint decoding. Assume {Xi} and {Yi} are the sequences 
of sample values collected in the sensor node A and B 
respectively (see Figure 1). In the individual source coding, 
the entropy H(X) and H(Y) must be sent respectively to the 
base station. However, according to Shannon’s theory, if 
they are correlated discrete random variables of independent 
and identical distribution (i.i.d), only joint entropy H(X, Y) is 
needed for lossless compression if they are encoded together. 
Slepian-Wolf extends Shannon’s theorem further to that even 
if X and Y must be separately encoded, a rate H(X, Y) can 
also be achieved if decoding of X and Y is done jointly. In 
WSNs, that means every individual node can compress its 
data and reduce the distributed redundancy only based on its 
own information. DSC is very suitable for WSNs because it 
excludes the data exchange, which would be very expensive 
for the extremely limited power and bandwidth, among the 
correlated neighbor nodes in WSNs. Slepian-Wolf source 
coding is lossless. While in practice, Slepian-Wolf coding is 
often combined with quantization to provide an approach to 
address lossy DSC problems. 

B. An Example of Slepian-Wolf Coding [3] 
For binary sample value Xi, Yi ∈ {000, 001, …, 111}, 

each of them needs to be encoded by 3 bits/sample. However 

 
if the correlation is known that the hamming distance 
between Xi and Yi is dH ≤ 1, the value space can be divided 
into four cosets: Z00 = {000, 111}, Z01 = {001, 110}, Z10 = 
{010, 101} and Z11 = {100, 011}. In every coset, the 
hamming distance between any two values is larger than or 
equal to 3. Y is encoded into H(Y) = 3 bits/sample and this 
original data is sent to the base station. Additionally, X is 
encoded as the index of the cosets H(X|Y) = 2 bits/sample 
and this compressed data is also sent to the base station. In 
the base station, Y is first decoded, and then X can be 
decoded depending on the side information Y. For a given Y, 
there are only four possible choices which belong to four 
separate cosets under the condition dH ≤ 1. For example, 
when Y = 000, X ∈ {000, 001, 010, 100}. Assume encoded 
value X’ = 01 is the index of the coset, the only answer X = 
001 can be decided because the hamming distance between 
Y = 000 and 110 (the other value in the coset) is 2 which is 
larger than max(dH). Thus the Slepian-Wolf limit of H(X, Y) 
= H(Y) + H(X|Y ) = 3 + 2 = 5 bits is indeed achieved in this 
example with lossless decoding. 

From the above example, we can generalize the 
Slepian-Wolf coding to the case when X and Y are 
equiprobable 2n bit binary sources. Here n ≥ 3 is a positive 
integer. The correlation model between X and Y is again 
characterized by dH (X, Y) ≤ 2k – 1. Let m = k + 1, then H(X) = 
H(Y) = n bits per sample, H(X|Y) = m bits per sample, and 
H(X,Y) = n + m bits per pair of samples for joint encoding.  

For the implementation of DSC in WSNs, the choice of 
parameters n (the source codebook size) and k (the 
correlation) is an interesting topic. It could be automatically 
adjusted based on the history information. In our research, 
we decide these values by statistic analysis. 

C. Wavelet and Lifting Scheme Wavelet Transform 
Because our interested information lies in the low 

frequency component in the structure monitoring application, 
it is important to decompose it from the high frequency 
component. Wavelet Transform (WT) can analyze the 
signals in a frequency domain and decompose signals into 
the low frequency and high frequency components. DSC 
works well for the low frequency component, and the high 
frequency component is quantized to a small value later. WT 
outperforms traditional frequency transforms, i.e. FFT and 
DCT, because it does not need to know the global time 
domain information and can detect both the low frequency 
and the high frequency information automatically. Another 
important advantage of WT is that it can analyze the signal 
in multi-scales – the low frequency component can be 
decomposed again (figure 2), which provides us the potential 
to achieve a tradeoff between the data quality and 
compression ratio. The computation complexity of Mallat 
WT is O(n) which is also called fast wavelet transform 
comparing the complexity O(nlogn) of FFT and DCT. All of 
these characteristics indicate that WT is suitable for data 
compression and DSC naturally in WSNs. 

X’=H(X|Y) 

sinkA B

Y’=H(Y) 
Y = Decode(Y’) 

Decode(X’) based on Y,

Figure 1. Basic structure of distributed source 



  
LSWT is the second generation WT which is extended 

from Mallat algorithm. LSWT replaces the translating and 
dilating operations of conventional WT with splitting, 
prediction (dual lifting) and updating (primal lifting) 
operations. Compared to the first generation WT, LSWT has 
three main advantages when implemented in sensor 
networks [6]. First, it is faster than the Mallat algorithm 
although the computation complexity is still O(n). Second, 
unlike the first generation WT, its inverse transform is easy 
to find and implement. Last, LSWT provides integer to 
integer mapping which is favorable in WSNs because the 
sensed data is a 10 bit integer. 

In our simulation, we test two kinds of popular wavelets: 
CDF(1,1) (Haar wavelet ) and Daubechies D4 wavelet. In 
the version of Daubechies D4 transform, LSWT consists of 
splitting, two updates, prediction, and normalization. 
Splitting refers to splitting the original data set λj+1 into the 
even part λj and the odd part γj. The first update is to use the 
odd part to update the even part. After that, the even part is 
used to predict the odd part, followed by the update process 
again. The last step is normalization. The sequence of the 
steps is listed as equations (1) ~ (4): 
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Assume that the length of data set λj+1 is 2n. To handle the 
edge problem, λ-1 and γn is replaced by λn-1 and γ0 
respectively. 

IV. SYSTEM DESIGN 

A. Simulation System Structure 
In our simulation, we use the same sample data as used in 

[5], which obtained by a civil engineering research group 
which utilizes the Micaz motes with 128K Program Flash 
Memory and 10 bit Analog to Digital Converter developed 
by UC Berkeley, and collect the data from a five layer civil 
infrastructure model [5]. The distance between each layer is 
15cm. The first layer is attached to a motherboard which is 
driven by a vibration exciter. All the upper layers oscillate 
along with the lower layers. One sensor node is put in each 
layer and acceleration data is collected at a sample frequency 
50Hz. Related research [4] has evaluated the accuracy of the 
ADXL202E onboard accelerometer for structure health 
monitoring and its modifications have been proposed. All the 

data collected are saved in the RAM. After collecting 4096 
samples, the data will be compressed in the sensor node and 
sent to the base station which is connected to a PC. The data 
compression process is described in details in the next 
section.  

B. Compression Process 
To take advantage of DSC, the node in the first layer of 

the structure sends the original (self compressed) data as side 
information to the base station, and each other node sends 
the DSC compressed data. 

The compress process is illustrated in Figure 3. 
 The first step is LSWT. LSWT can be repeated by 

iteration on the λj, creating a multi-level or 
multi-resolution decomposition. 

 The second step is quantization. We choose scalar 
quantization in our application to reduce the individual 
redundancy because it has been widely studied and 
successfully implemented in data compression 
combined with WT. 
After the quantization, most of the high frequency data 
value is set to zero. We use modified unary coding to 
encode the high frequency data set. That is: only the 
nonzero data set {xi} are encoded. If xi >0, we encode it 
with 2×xi bits 1 and 10 bits relative position 
information. If xi <0, we encode it with 2xi-1 bits and 
10 bits relative position information. For the low 
frequency component, we encode them as DSC 
described in the following steps. 

 The third step is to map the coefficient to the source 
codebook. The codebook area is from 0 to 2n-1. n is 
decided by the vibration character and statistic analysis. 
After the mapping, we can encode every data into n bits 
per sample which represents H(Y). We rename the 
encoded data as base data. If the data is collected in the 
first layer sensor node, the compress process will be 
ended here and the base data will be sent to the base 
station, otherwise we continue to the next step. 

 The fourth step is DSC. The data set is partitioned into 
different cosets as the channel codebook, and the 
original data is replaced with the channel codeword 
which is the coset index and represents H(X|Y). We 
rename this kind of data as fully compressed data. 

After the base station receives all the collected data, it will 
decompress all the data step by step. The decompress 
process includes: 

 First, the base station decompresses base data received 
from first layer sensor node. Because this data 
represents H(Y), we can decompress it without any side 
information.  

 Then, we decompress the second layer data based on 
the decompressed first layer data as side information.  

 After that, we can utilize the decompressed data of the 
second layer node to estimate and decompress the data 
from the third layer. This process is repeated till all the 
data is decompressed. 

The proposed compress algorithm is a lossy one. The 
distortion includes quantization error conduced by scalar 
quantization and estimation error conduced by the channel 
coding. To achieve tolerable distortion ratios, we can adjust  
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Figure 2: The wavelet decomposition tree with scale level n=2



 
 

the quantization parameter and correlation parameter k. 

C. Data Format and System Topology Extension 
The encoded data structure in the application in our 

system is illustrated in Figure 4: 

 
Type field is to depart the base data (0) from fully 
compressed data (1). If type field is 0, base_ID field is its 
own node ID. Otherwise base_ID is the ID of its correlated 
node whose data is used as side information. Len field is the 
length of payload data. 

Considering the implementation of our algorithms to large 
scenarios of WSNs, we should also consider the topology 
management for DSC. In [8], four DSC encoding schemes 
are provided, with the discussion of compression rate and 
loss factor separately. The cluster head, which sends the 
original data, could be selected dynamically to balance the 
power consumption. The topology controlled data 
compression is also our future research.  

V. EXPERIMENTS AND SIMULATIONS 
The overall goal of our experiments is to measure the 

compression ratio, restored data performance (distortion 
ratio) and computation complexity of our algorithms and 
compare them with other peer algorithms in various structure 
vibration scenarios. The system structure of our experiment 
is depicted in the previous section. The vibration exciter 
generates the vibration and drives the motherboard which 
connects the five layers structure. The basic methodology we 
use to measure the properties of our proposed compression 
algorithms is to change the vibration frequency of the exciter. 
However, because the highest sample frequency of the 
accelerometer (ADXL202E) in the sensor board is 60Hz, we 
can’t detect higher frequency information. To justify the 
proposed WT-DSC based algorithms, White Gauss Noises of 
different degree are added to the collected sample value. We 
compare the results of our algorithms with those of other 
existing compression algorithms [5]. We call the proposed 
algorithms Haar-DSC (Haar wavelet based DSC) and 
Daub-DSC (Daubechies4 wavelet based DSC). We also 
rename the algorithms in [5] as Haar-MUC and Daub-MUC.  
  Our experiments also compare the compression properties 
based on different wavelets and DSC parameters. The results 

are analyzed for each experiment. In order to enable a direct, 
fair comparison between different algorithms, we implement 
each selected algorithm on 20 sets of raw data sampled from 
20 scenarios with disparate vibration frequencies. Because 
these algorithms are challenged in the same identical 
condition, we can compare their performance directly. 
  In our experiments, we only measure the performance and 
results of the compression algorithms, rather than simulate 
the wireless sensor network topology. We choose C++ to 
implement our experimental code. 

A. Compression Ratio 
Compression ratio is one of most important criterions for 

a compression algorithm. Figure 5 highlights the relative 
compression ratio of the three compression algorithms as the 
noise degree increases. From the results, we can see that for 
the collected original signal without high frequency noise, 
Haar-DSC can achieve a higher compression ratio than that 
of Daub-DSC. However, as the noise degree increases, the 
compression ratio of Daub-DSC increases rapidly while that 
of Haar-DSC decreases. Haar WT performs an average and 
difference on each pair of neighbor values. For the original 
signal without noise, the high frequency component that 
stands for the difference consists of mostly zeros, and the 
low frequency component that stands for the average is 
smoother than that of Daubechies wavelet transformed 
signal, which picks up some neighbor nodes for high pass 
and low pass filters, because there is an overlap between 
iterations in the transform step, and the overlap makes the 
transformed data not as smooth as that of Haar WT. The 
smoother the signal, the higher the correlation, allowing 
Haar-DSC to achieve a better compression ratio than 
Daub-DSC. However, as the noise power increase, the high 
frequency component in the Haar-DSC conserved more high 
frequency information which can not be filtered and it makes 
Modified Unary Coding inefficient. 

DSC based compression algorithms, which reduce both 
the local and distributed redundancy, always outperform 
MUC based algorithms. Haar-DSC achieves almost the same 
compression ratio with the Haar-MUC when the noise ratio 
is larger than 0.5dBW. The reason is that the high frequency 
component contains large values under this condition, and 
most of the compressed data bits come from this part which 
is encoded by MUC in both algorithms. 

B. Compression Performance 
The proposed compression algorithms in this paper are 

lossy algorithms, and the information is lost for quantization 
and estimation error. We evaluate our compression 
performance using three means: Peak Signal to Noise Ratio 
(PSNR), time domain analysis and low frequency domain 
analysis. PSNR of a reconstructed signal xi

* compared to the 
original signal xi is defined as: 
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where n is the length of the sample data set. 
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Figure 3: The compression process in sensor nodes 
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Figure 5: Compression ratio vs. noise degree     Figure 6: The peak signal to noise ratio vs. noise degree

PSNR is related to the properties of (bi)orthogonal 
wavelets [6]: neglecting the wavelet coefficients with the 
smallest magnitudes is a good compression approach if one 
wants to keep a high PSNR. Figure 6 shows that our proposed 
DSC based compression algorithms can always get the same 
compression quality as the MUC based algorithms. Because 
MUC is a lossless entropy coding algorithm, it also justifies 
the estimation error is neglectable in our proposed algorithms. 

To better illustrate the performance of LSWT based 
algorithms and compare them with other algorithms, the 
original and reconstructed signals in time and frequency 
domains are shown in Figures 7 and 8. Both the Haar-DSC 
algorithm and Daub-DSC algorithm can achieve favorable 
performance in the low noise situation. However, when the 
noise degree increases slightly, the effect of Haar-DSC is 
weakened quickly, while Daub-DSC can still achieve fairish 
effect for the favorable characters of Daubechies wavelet. In 
the structure health monitoring applications, low frequency 
information of the sample signal is the important part. As the 
noise degree increase, the Haar-DSC algorithm can’t restore 
the original low frequency signal, while Daub-DSC algorithm 
can still restore the original signal when the noise power 
increases to 5dBW. The results validate the feasibility of the 
proposed algorithms in the structure health monitoring 
applications. It is suitable for vibration and other high 
frequency correlated data compression. 

C. Computation Complexity 
Computation complexity is another important criterion 

when evaluating the compression algorithm, especially in the 
WSNs with limited resources. The compression process 
consists of three steps in our algorithms: LSWT, scalar 
quantization and DSC or MUC. The computation complexity 
can be expressed as: 

C(n) = CLSWT + Cquan + p×CDSC + (1-p)×CMUC. p=1/2n 

where n is the scale level of LSWT. 
As analyzed in section III, the complexity of LSWT (CLSWT) 

is O(n). However, the complexity of Haar LSWT is less than 
Daubechies D4 LSWT because Haar LSWT only has two 
steps and counting two filter coefficients, while Daubechies 
D4 has four steps and counting four filter coefficients.  

The computation of scalar quantization matrix is nontrivial. 
However, we found that the sampled value from the same 
layer observed the same curve model in every experiment. To 
improve the efficiency of the algorithms, we only calculate 
the quantization matrix one time, and use the same matrix in 
all the later quantization process, so that we reduced the 
quantization complexity (Cquan) to O(n). Results show it does 
not affect the compression performance under this condition. 

The computation complexity of both DSC (CDSC) and 
MUC (CMUC) is O(n), while DSC is still faster than MUC 
because the coding complexity of DSC for every symbol is 1 
compared to the complexity 2×|xi| of MUC for symbol xi. 
Overall, the total computational complexity of our algorithms 
is still O(n). 

From the above analysis, we can get the total complexity: 

C(n) ∈ O(n) 

The running time of all the algorithms is listed in table 1. 
All the data is measured in Micaz platform associated with an 
ADXL202E onboard accelerometer. 

As the experiments and analysis result demonstrated 
previously, we can see that the proposed LSWT and DSC 
based algorithms outperform their peer algorithms on 
compression ratio with the same data quality and similar 
computation overhead. Comparing Haar-Wavelet and 
Daubechies-Wavelet, Haar-Wavelet is more suitable for 
low-noise conditions because it is simpler and can also 
achieve good performance. In high-noise conditions, 
Daubechies-Wavelet, which outperforms Haar-Wavelet 
significantly, is the better choise. 

VI. CONCLUSIONS 
The research area of in-network processing in WSNs has 

been receiving more and more attention in recent years. Civil 
infrastructure health monitoring is an important application 
for WSNs. In this research, we propose new compression 
algorithms for high frequency sensor data based on LSWT 
and DSC. The proposed algorithms can achieve 1:27 to 1:80 
compression ratios without weakening the data quality. 

We first theoretically validate the correctness of our 
proposed algorithms, and analyze the appropriate choice of 



 

(a)         (b)         (c) 
Figure 7: The comparison of original and restored signal (a) noise: 0dBW, (b) noise: 0.5dBW, (c) noise: 5dBW 

 
(a)         (b)         (c) 

Figure 8: The frequency domain analysis (a) noise: 0dBW, (b) noise: 0.5dBW, (c) noise: 5dBW 

different wavelet functions in special scenarios. We then 
implement the proposed algorithms in the experiment system. 
Results are analyzed based on compression ratio, data quality, 
and computation complexity. After the comparison with other 
peer algorithms, we validate that the LSWT and DSC based 
compression algorithms are favorable for high frequency data 
compression in WSNs. 

Table 1: Computation time (s) in the Micaz sensor mote for 
4096 sample value compression 

Algorithms Wavelet 
transform 

Quanti- 
zation 

Source 
coding 

Total 
time 

Haar-DSC 0.0102 0.0070 0.0629 0.0801 
Haar-MUC 0.0102 0.0071 0.0611 0.0783 
Daub-DSC 0.0450 0.0070 0.1196 0.1717 
Daub-MUC 0.0451 0.0070 0.0447 0.0968 
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