
Active Message Oriented Adaptation Middleware for
Collaborative Applications in Heterogeneous

Environments

Shengpu Liu
Computer Science and Engineering

Lehigh University
Bethlehem, USA

shl204@lehigh.edu

Liang Cheng
Computer Science and Engineering

Lehigh University
Bethlehem, USA

cheng@cse.lehigh.edu

Abstract—Adaptation middleware is becoming widely used to
build adaptive collaborative applications. However, collaborative
applications requiring real-time services are intolerant of the
long reconfiguration time of the existing adaptation middleware,
which is in a range of seconds or even tens of seconds. In this
paper, we present MARCHES, which is active message oriented
adaptation middleware that reduces the reconfiguration time.
Different from the traditional middleware that supports the
single component-chain based application architecture,
MARCHES maintains multiple component chains or actuators.
Then the process of architecture reconfiguration is done by a new
method of switching active and inactive actuators, which replaces
the traditional method of modifying the single-chain architecture.
An active message based synchronization protocol is proposed
according to the new method to reduce the communication
overhead and reconfiguration time. Experiment results
demonstrate that MARCHES improves the packet delivery ratio
and throughput of collaborative applications. Results also show
that the reconfiguration time achieved by MARCHES is in a
range of hundreds of microseconds and the extra costs
introduced by the multi-actuator architecture are extremely low.

Keywords- Middleware; adaptation; active messages

I. INTRODUCTION
A distributed collaborative application is a set of programs

that help human beings, software, or hardware work together to
fulfill certain tasks in networked collaboration environments.
Recently, there is a need to migrate traditional collaborative
applications, which previously run in homogenous computing
platforms and network infrastructure, to heterogeneous
environments due to the popularity of portable devices and
advances of wireless communication techniques (e.g. Wi-Fi).
Such a heterogeneous environment with mobile devices and
wireless links challenges the performance of the applications
because of its dynamic feature of resource availability.

One approach to addressing the performance issue is to
make collaborative applications adaptive by using adaptation
middleware, which offers the following benefits. Firstly,
middleware can be used to facilitate the implementation of
complex applications so that developers can pay more attention
to the application logic and architecture design. Secondly,
because middleware abstracts the low-level details of network

operations and interfaces, it supports development of generic
distributed applications by providing connections among
distributed software components.

Adaptation middleware uses the component-based
metamodel to build adaptive collaborative applications. The
applications consist of a set of function-independent interacting
components, which form a component chain. For each
distributed program of a collaborative application, existing
adaptation middleware supports only one component chain,
which is also named as an actuator in this paper (Fig. 1a). The
actuator can be dynamically reconfigured via chain-structure
modifications by the middleware corresponding to the run-time
contextual information of the heterogeneous environments so
that the application can be adaptive to environment changes.
However, collaborative applications with real-time data are
intolerant of long reconfiguration time of the existing
adaptation middleware since each reconfiguration process
includes operation suspension, buffer clearance, and chain-
structure modifications that take seconds or more in total [1].

In this research, we propose MARCHES (Middleware for
Adaptive Robust Collaborations across Heterogeneous
Environments and Systems), which solves the critical issue of
the reconfiguration time by using active messages and supports
context-aware application-layer adaptation. Different from any
existing middleware, MARCHES supports multiple actuators
in each program of a collaborative application (Fig. 1b). Thus
modifying the actuator in traditional middleware is replaced by
switching active and inactive actuators in MARCHES based on
the active messages. This results in a dramatic reduction of the
reconfiguration time by eliminating the operation suspension
time and buffer clearance time. Furthermore, the robustness of
the distributed application is improved since there is no
communication and system halting in the distributed actuator-
synchronization process by using the active messages. The
costs introduced such as extra resource consumption and active
message overhead are negligible to the computing platforms
including mobile devices as validated by our experiments.

In the rest of this paper, Section II presents the details of
MARCHES, Section III describes the experiments used for
evaluating MARCHES, Section IV covers the related work,
and Section V concludes this paper.

This research is supported by the U.S. National Science Foundation
(Award# 0438300). The project website is http://marches.cse.lehigh.edu/.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2008 proceedings.

978-1-4244-2075-9/08/$25.00 ©2008 IEEE 1866

One Actuator

21
Modified Actuator

21 3

Architecture 1 Architecture 2 (a)

21

21 3

Active Actuator i

Inactive Actuator j

21

21 3

Inactive Actuator i

Active Actuator j

Architecture 1 Architecture 2
(b)

Figure 1. Dynamic reconfiguration: (a) single-actuator architecture in
existing middleware, (b) multiple-actuator architecture in MARCHES.

II. SYSTEM ARCHITECTURE OF MARCHES
As shown in Fig. 2, MARCHES is located between the

lower hardware and network layer and the upper application
layer to monitor environments and support application
adaptation. It is peer-to-peer middleware and there is one
middleware agent per application in each host. There are five
parts in each MARCHES agent: measurement tools, event
sensors based on a hierarchical event model, a script parser
based on XML, a decision engine, and a dynamic
reconfigurator. Measurement tools monitor the heterogeneous
environments and report the context awareness results; and the
contextual information will be processed by the event sensors.
The sensors and actuators, in addition to adaptation rules, are
defined by application developers in a XML script file. There
are two types of actuators, proactive and reactive ones. The
XML script parser parses the script file and constructs the
sensors and proactive actuators to process local data. The
reactive actuators are constructed through a synchronization
process with peer agents to process the received data. Once a
context triggers an event sensor, a corresponding proactive
actuator will be activated.

Awareness Tool Components

Event Interpreter / Sensors

Network / Hardware

Script Parser

Adaptation
Rules

Decision Engine

Program

CC1 CC2 CCn
Computing Components

Architecture

Act1 Act2 Actn
Proactive Actuators

M
id

dl
ew

ar
e

Ag
en

t RAct1 RAct2 RActn
Reactive Actuators

Awareness Tool Components

Event Interpreter / Sensors

Network / Hardware

Script Parser

Adaptation
Rules

Decision Engine

Program

CC1 CC2 CCn
Computing Components

Architecture

Act1 Act2 Actn
Proactive Actuators

RAct1 RAct2 RActn
Reactive Actuators

Sync.

Sync.

M
id

dl
ew

ar
e

Ag
en

t

Adaptive Collaborative Application

Figure 2. System architecture of MARCHES.

A. MARCHES Components
Components in MARCHES are function independent

computing units that implement and provide some interfaces.
Each component has a component interface that fetches a
unique ID (e.g. the name and version pair) from its attributes
file described in IDL (Interface Description Language) so that
the component can be identified by MARCHES.

Reconfigurable computing components (named as
marchlets) are the basic units to construct MARCHES
actuators. Each marchlet has a comm interface for
communication purpose. The comm interface provides both
message based and function based communication modes for
the marchlet to interact with other marchlets. In the message
based mode, the output interface of a marchlet notifies the
subscribed input interfaces of other marchlets through
messages after the input data are processed. This mode
facilitates the parallel processing in marchlets and it is suitable
for the actuators that contain virtual components. In the
function based mode, all the data processing functions are
connected and invoked one by one by the actuator in the same
thread. If all the marchlets are in a local host, the function
based mode serves the actuator better with smaller
communication overhead than the message based mode.

Context awareness for adaptive applications has been
studied in our previous work [3]. MARCHES facilitates the
reuse and extension of existing measurement tools and
integrates them via an awaretool component metamodel that
accepts the registration of event sensors as listeners and notifies
them through an awaretool interface. Thus measurement tools
can be implemented as independent components (awaretools)
that can be used and extended in MARCHES.

B. Adaptation Rule Script
To use MARCHES to build an adaptive application,

developer(s) need to provide a script file that divided into a
declaration part and an adaptation-rule part as shown in Fig. 3.
<Marchlets>
<component name="Grab" version="1.0" type="Proactive">
<alias> GRAB </alias>
<param name="CaptureWidth"> 160 </param>
<param name="CaptureHeight"> 120 </param>
</component>
......

</Marchlets>
<MarchTools>
<component name="AvailableBW" version="2.0" type="Tool">
<alias> AVAILABLEBW </alias>
<param name="packetSize"> 64 </param>
<param name="packetNum"> 2 </param>
<param name="Interval"> 300 </param>
</component>
......

</MarchTools>
<Rules>
<rule>

<sensor> AvailableBW GT 10 && AvailableCPU LT 1.0 </sensor>
<proActuator>
<marchlet name="GRAB"> </marchlet>
</proActuator>
<reActuator>
<marchlet name="DISPLAY"> </marchlet>
</reActuator>
</rule>
......

</Rules>
Figure 3. An example of the adaptation rule script.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2008 proceedings.

1867

The declaration part declares all components used in the
local program and middleware agent. Based on the declaration,
the MARCHES agent loads and instantiates the components,
and initializes them with the provided parameters. The
adaptation rule part contains adaptation rules and each rule can
be further separated into three sections: a sensor, a proactive
actuator, and an optional reactive actuator. The sensor section
can be parsed by the event interpreter to build an event sensor
that accepts the subscription of the proactive actuator declared
in the proactive actuator section. Each proactive actuator
consists of a list of marchlets that have been declared in the
marchlets segment with a parameter list for each marchlet. The
reactive actuator section describes the corresponding actuator
of a peer agent that processes the received data from the
proactive actuator of the peer agent, so that the actions of the
proactive and the reactive actuators can be synchronized.

C. Composite Event Model
Each sensor in MARCHES is build upon a hierarchical

event notification model where several contextual events can
be integrated as a binary event tree to form a sensor. In the
constructed event tree, there are two types of event nodes as
shown as dashed frames in Fig. 4: leaf nodes called simple
events and branch nodes called composite events. A simple
event has one event source that reports the awareness results
spawned from awaretools / awarefuns to a compare conditioner
located in the same event node; and the comparison result will
be sent to its subscribers. A composite event has two event
sources, which are lower layer simple or composite events, and
a Boolean conditioner, which does the Boolean operation of
the event source reports. An upper layer Boolean conditioner or
an actuator can subscribe to an event. Thus the sensor can
monitor and process the awareness results based on the event
tree, and report interested events to its subscribed actuator and
trigger the application architecture reconfiguration at run time.

D. Component Reconfiguration and Synchronization
Conventional component-based adaptation middleware uses

one component chain or actuator per application at each host.
Thus the operation suspension and buffer clearance in the
reconfiguration process introduce large overhead and delay.

Awareness Tools

Compare
Conditioner

notify

get/put
Event

Source

Simple Event

updateregister

Compare
Conditioner

notify

get/put
Event

Source

Simple Event

update register

Boolean Conditioner

Left
register

Right
registernotify notify

get get

Composite Event

Composite Event

Boolean Conditioner

Actuator

notify

notify

register

Right
register

get
get

Composite Event

notify Left
register

Figure 4. The binary tree based hierarchical event notification model.

By contrast, our middleware uses multi-actuator
architecture with shared components as shown in Fig. 1.
Proactive actuators are constructed when the adaptation rules
are parsed by connecting the references of the marchlets, which
are instantiated when the marchlets segment is parsed. To
reduce the resource consumption by the multiple actuators,
each actuator only consists of a list of pointers that point to the
marchlets instances and maintains a customized parameter list
for each marchlet reference. Thus all actuators share the
marchlets and only one of the actuators is active at any time to
process the application data. And the actuator modification
process in the conventional single-actuator architecture is
replaced by the switching process of the active and inactive
actuators in the MARCHES architecture. When the context
changes and the condition of a new sensor is met, the current
active actuator is either stopped immediately after the
component states are stored to its parameter list or deactivated
after its currently task is completed. And the new actuator
subscribing to the new sensor will be reinitialized by its
parameter list and activated to process the application data.

Since each distributed program of a collaborative
application has its own component chain or actuator,
architecture synchronization is a crucial service provided by the
middleware for dynamic reconfiguration to achieve behavior
consistency among the distributed component chains. We have
designed an efficient synchronization protocol in MARCHES
using active messages with the following initialization steps.

• In the initialization phase of a middleware agent, proactive
actuators are constructed based on the script file. Each
proactive actuator is associated with a middleware-
assigned unique index and the architecture information of
an optional reactive actuator.

• The middleware agent of the proactive actuators sends a
synchronization request packet to each collaborative peer
agent. It contains the indices of the proactive actuators and
the architecture information of the reactive actuators.

• After receiving the synchronization request packet, the
peer agent constructs the reactive actuators, each of which
is associated with the IP address of the packet sender and a
middleware-assigned unique index carried by the packet.

• The receiver or the peer agent returns the sender a
synchronization response packet that includes related
index pairs, each of which contains an index of the
proactive actuator and the index of the reactive actuator.

• The sender agent replaces the architecture information of
each reactive actuator with the corresponding index
received from the synchronization response packet.

The initialization is a one-time process for each peer agent.
Then the middleware agent of the proactive actuators appends
the index of the reactive actuator, which corresponds to the
current active actuator, to the payload of each data packet. The
peer agent receiving the data packet activates the reactive
actuator indexed by the received index to process the data.

The active message based synchronization protocol has four
advantages: low overhead, short delay, high efficiency, and
better robustness. Only the index of the reactive actuator needs

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2008 proceedings.

1868

to be stored in the active message header of each data packet.
By using the actuator switching method, the system does not
need to be paused in the reconfiguration process, which
dramatically reduces the reconfiguration time. Based on the
information in the active message header, a peer agent can
process the received packets by choosing the correct reactive
actuator. Therefore no buffered clearance is needed for
reconfiguration. Moreover, once the reactive actuators are
constructed, the packet receiver agent does not need to be re-
synchronized with the sender agent when the architecture of the
sender agent is reconfigured. Thus the application’s robustness
is improved and communication overhead is reduced.

III. IMPLEMENTATION AND PERFORMANCE EVALUATION
MARCHES aims at improving the performance of

collaborative applications under heterogeneous environments
with vigorously dynamic features by facilitating application
adaptation through architecture reconfigurations. Since the
reconfiguration process introduces some performance cost such
as extra resource consumptions to maintain the multiple
actuators and application response time to accommodate
reconfiguration delays, it is important to check the feasibility of
using MARCHES by studying its performance cost in terms of
the reconfiguration time and resource consumption, and the
benefits of using MARCHES by evaluating the performance
gain in terms of package delivery ratios and throughputs.

A. Testbed
In our experiments, we setup a small testbed by using two

routers (Cisco 3200), two switches (Cisco Catalyst 2900XL),
two laptops (Thinkpad-X60: Intel T2300 1.66GHz, 512MB
PC2-5300, and Windows XP), and two PDAs (Dell x51v: Intel
XScale 624MHz, 64MB, and WM5) to simulate heterogeneous
environments. The routers are connected back-to-back through
their serial interfaces with a maximum bandwidth of 1300Kbps
using a DCE/DTE cable and the serial link as the bottleneck
can have its bandwidth changed on-the-fly manually.

We implement a video-conferencing application based on
MARCHES where proactive actuators prepare and send video
frames and reactive actuators receive and display the frames.

There are four marchlets (Grab, Compress, Decompress,
and Display), two awaretools that measure the available
bandwidth between the laptops and the available CPU resource
respectively. The application architecture can be dynamically
reconfigured by using or not using the Compress marchlet, or
set different compression ratio according to three adaptation
rules. For example, when the available bandwidth is less than
10Mbps and the available CPU resource is larger than 1.0GHz,
the event sensor will activate the proactive actuator for
reconfiguration. The video rate is fixed as 2fps. The maximum
frame size is 36910 bytes (128×96 pixels) so that a frame can
be sent in one packet to avoid application-layer segmentation.

B. Dynamic Reconfiguration Time
The reconfiguration time or delay indicates the level of

middleware’s responsiveness to environments. Table I
describes the notation used in the analysis of the dynamic
reconfiguration time Tdr, which is expressed as:

 Tdr = Tevent + Tarch + Tsync . (1)

where Tsync = Treco + Tinit for the first reconfiguration process
and Tsync = Treco for later reconfigurations.

TABLE I. PARAMETERS FOR RECONFIGURATION TIME ANALYSIS

Notation Parameter

Tevent
Composite event notification time: the time period
between the time when the context changes and the time
when the architecture is notified for reconfiguration

Tarch
Architecture change time: the actuator switch time in
MARCHES

Tsync
Synchronization time: the time period that the reactive
architecture is adapted to the proactive architecture change

Tdr Dynamic reconfiguration time

Tinit
Initialization time: one-time initialization time at the
beginning of system construction

Treco Reactive architecture reconfiguration time

TABLE II. THE DYNAMIC RECONFIGURATION TIME OF MARCHES

Scenarios Average
Time (µs)

Standard
Dev. (µs)

Confidence
Int. (α = 0.5)

one rule and one level 161.7 8.895067 1.89725
one rule and two level 315.3 10.44616 2.228086
two rules and one level 322.7 7.242621 1.544796 Tevent

two rules and two level 423.8 52.38702 11.17375
Tarch 36.2 0.421637 0.089932

Tinit (one time init.) 825.9031 144.2641 30.77042 Tsync Treco (reactive reconf.) 33.7 0.948683 0.202347
one rule and one level 231.6 8.771165 1.870823

Tdr two rules and two level 493.7 52.60344 11.21991

To better evaluate the performance of the hierarchical event

model, four types of event sensors are tested: one adaptation
rule with a one-level event tree (a simple event), one adaptation
rule with a two-level event tree (a composite event), two
adaptation rules with a one-level event tree for each rule, and
two adaptation rules with a two-level event tree for each rule.
The experiment results, which are calculated based on 10
measurements, are listed in Table II.

We observe that the reconfiguration time of MARCHES in
our test bed is only in a range of hundreds of microseconds.
Comparing to the reconfiguration time of seconds or tens of
seconds in other adaptation middleware [1], the responsiveness
of our middleware is significantly better. Moreover, as a major
contributor of the reconfiguration time, the event notification
time is directly proportional to the number of the adaptation
rules and the complexities of the event sensors.

C. Resource Consumption and Active Message Overhead
The resource consumption R can be expressed as follows

where Pijk is the size of parameter k for marchlet j in acutator i
(10 bytes as default), lij is the reference and name size of
marchlet j in actuator i (12 bytes as default), and ai is the index
size of actuator i (8 bytes as default).

∑ ∑ ∑

+

 +=
i

i
j

ij
k

ijk alpR
. (2)

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2008 proceedings.

1869

For the MARCHES agent in our experiments that contains
3 actuators as described in Fig. 3, the resource consumption is
164 bytes. For a more complicated agent that contains 5
actuators, 10 marchlets for each actuator, and 10 parameters for
each marchlets, the resource consumption is 5640 bytes (≈ 5.5
KB) that is still fairly small for most mobile devices hosting
megabits or gigabits memories. The overhead induced in the
one-time synchronization initialization process includes the
synchronization request and response packets that are much
smaller than the payload size of a data packet. After the
initialization, only a 1-byte active message header is appended
to each data packet to store the index of a reactive actuator.

D. Throughput and Packet Delivery Ratio
Experimental results show that the adaptive application can

always achieve higher throughput than the non-reconfigurable
application with compression because it transmits high-quality
videos in the high-bandwidth condition and adaptive-quality
videos in the low-bandwidth condition while the non-
reconfigurable application always transmits low-quality videos
regardless of the network status. The non-reconfigurable
application without compression achieves extremely low
throughput in the low-bandwidth condition as most packets are
dropped due to congestion; and it can achieve higher
throughput than the adaptive application at the beginning of the
bandwidth-increasing period since some packets buffered at the
router in the previous congestion period are now delivered.

IV. RELATED WORK
Based on the placement of the adaptation, the adaptation

middleware can be divided into an application-transparent
category [4], in which the adaptation occurs in the middleware,
and an application-aware category [1], in which the adaptation
occurs in the application. Application-transparent systems can
reduce complexity of the applications because contextual
information is hidden from the applications and the adaptation
is completely controlled by the middleware. However, such
middleware can only provide best-effort adaptation since the
characteristics and objectives of applications are unknown to
the middleware. MARCHES is a type of middleware enabling
application-aware adaptation, which assists applications to
make more efficient adaptation decisions. Since the application
directly controls its adaptive behavior, the middleware is more
easily to be reused to build different adaptive applications.

Based on the supported applications architecture, adaptation
middleware can also be classified as grid-based [4],
client/server-based [1], or peer-to-peer [7] middleware. Delphoi
[4] is grid-based middleware that monitors environments and
makes adaptation decisions for grid-aware applications in the
GridLab platform. However, the existing grid-based adaptation
middleware does not provide a component synchronization
service, which is important for developing collaborative
applications. MobiPADS [1] is client/server-based middleware
that enables adaptation in both middleware layer and
application layer for mobile client/server applications. It
supports the single service-chain reconfiguration and
synchronization. Its reconfiguration and service suspension
time is in a range of seconds or tens of seconds [1]. Thus

MobiPADS is not suitable for building real-time collaborative
applications. MARCHES is peer-to-peer middleware and each
agent functions as both a client and a server to other agents in
distributed applications. Contrast to MobiPADS, MARCHES
supports multi-actuator architecture and active messages,
which largely reduces the overhead and reconfiguration time.

The concept of active messages was originally proposed for
large-scale multiprocessors to minimize inter-processor
communication overhead and allow communication to overlap
computation [8]. This paper utilizes the active-message concept
in the first time to address the architecture synchronization
problem in the dynamic reconfiguration middleware.

V. CONCLUSIONS
In this paper, we have described a middleware-based

adaptation approach called MARCHES to building adaptive
collaborative applications. It supports adaptive application
architecture with multiple component chains called actuators in
each distributed program and uses an active message based
synchronization protocol for the application reconfiguration.
This novel architecture eliminates the operation suspension and
buffer clearance delays in conventional adaptive application
architecture that uses single-component-chain reconfigurations.
Thus MARCHES offers reduced reconfiguration time and
improved reconfiguration robustness to adaptive applications,
which was supported by our experiments based on the
complete implementation of MARCHES. Results also show
that the extra costs introduced by the multi-actuator
architecture in MARCHES are extremely low.

ACKNOWLEDGMENT
The authors would like to acknowledge the support by the

U.S. National Science Foundation (Award# 0438300).

REFERENCES
[1] A. T.S.Chan, S. N. Chuang, MobiPADS: a reflective middelware for

context-aware mobile computing. IEEE Trans. on Software Engineering,
29(12), Dec. 2003.

[2] R. Litiu and A. Prakash, DACIA: a mobile component framework for
building adaptive distributed applications. Technical Report CSE-TR-
416-99, University of Michigan, EECS, Dec. 1999.

[3] Q. Wang and L. Cheng, AwareWare: an adaptation middleware for
heterogeneous environments. In Proceedings of 2004 IEEE International
Conference on Communications, Vol. 3, pp. 1406-1410, June 2004.

[4] J. Maassen, R. V. Nieuwpoort, and T. Kielman et. al., Middleware
adaptation with the delphoi service. Concurrency and Computation:
Practice & Experience, 2006.

[5] B. Li, Agilos: a middleware control architecture for application-aware
quality of service adaptations. PhD Thesis, University of Illinois, 2000.

[6] B. Aziz and C. Jensen, Adaptability in CORBA: the mobile proxy
approach. In IEEE International Symposium on Distributed Objects and
Applications, pp. 295–304, 2000.

[7] L. Capra, W. Emmerich, and C. Mascolo, Carisma: context-aware
reflective middleware system for mobile applications. IEEE Trans. on
Software Engineering, 29(10), pp. 929–945, 2003.

[8] T. von Eicken, D. E. Culler, S. C. Goldstein, and K.E. Schauser, Active
messages: a mechanism for integrated communication and computation.
In Proceedings of the 19th Annual International Symposium on
Computer Architecture, pp. 256–266, Gold Coast, Australia, May 1992.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2008 proceedings.

1870

