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Abstract

Wireless sensor networks need an efficient and reliable reprogramming service to
facilitate management and maintenance tasks. In this article we first outline a
framework to examine different functions in reprogramming, followed by an analy-
sis of reprogramming challenges. We then provide a comprehensive survey of the
state-of-the-art reprogramming systems, and discuss different approaches to address
these challenges. Finally we explore performance, protocol behavior, and the

impact of several design factors.

typical wireless sensor network (WSN) consists of

a large number of small-sized battery-powered

sensor nodes that integrate sensing, computing,

and communication capabilities. WSN applications
include geophysical/structural/habitat monitoring, security
surveillance, disaster area or battlefield information collection,
and pervasive computing. In most applications sensor networks
are deployed once and intended to operate unattended for a
long period of time. Management and maintenance tasks of
WSNs are challenging. Enabling sensor networks to be repro-
grammable is a way to address such challenges.

Code dissemination and code acquisition are two basic
schemes to reprogram sensor networks. Code dissemination is
usually used by system administrators for updating programs
on sensor nodes, fixing bugs, changing network functionality,
tuning module parameters, and replacing program modules.
Traditional ways of manually reprogramming sensors are cost-
ly, labor intensive or even impossible since each node has to
be collected from the field and physically attached to a com-
puter to “burn” new codes. In contrast to code dissemination,
code acquisition is initiated from individual sensors to fetch
and install program modules from the network dynamically
and on demand. It enables sensor nodes to self-reprogram so
that they can adapt to changing tasks and evolving environ-
ments. Due to capacity constraints of sensor nodes, a mono-
lithic program with too many functions cannot be fitted into
the memory. In addition, applications may need extra modules
to handle unforeseen events.

Reprogramming usually is implemented as an application-
independent service on top of a sensor operating system. This
article reviews the reprogramming framework, design chal-
lenges, existing systems and approaches, evaluation metrics,
and system behaviors.

WSN Reprogramming Framework

There are several major functions related to WSN reprogram-
ming, as outlined in a framework in Fig. 1.

Version control: A version control database manages vari-
ous program versions, the relations between update patches,
information about the current running programs on sensor
nodes, and so on.

Scope selection: Scope selection allows administrators to
select any particular nodes in the network for reprogramming.
The scope of reprogramming can also be the whole network.

Encoding/decoding: In simplest form, a reprogramming sys-
tem reads the new program image, encodes it into data pack-
ets, and sends packets out through radio. A receiver decodes
these packets and rebuilds the program image. Improved
encoding/decoding can be used to reduce the size of updates
and traffic loads in a WSN. It can also add security to data
transmission.

Code dissemination: This protocol transmits updates from
source nodes to targeted receivers. Code dissemination and
scope selection can work together to reprogram a partial net-
work.

Completion validation: The new program should be
received in its entirety without errors before running. Comple-
tion validation ensures the continuous functioning of WSNs.

Code acquisition: Code acquisition is initiated from sensor
nodes. Trigger conditions could be set in sensor nodes or
computed at runtime. If a condition is satisfied, a sensor node
will send code acquisition requests to find source node(s) that
have the desired program, module, or patch. After that,
route(s) will be built to send the codes from the source
node(s) to the requesting node.

Switching: After being received over the air, the new pro-
gram codes are usually stored in an external flash memory
(EEPROM) because the data memory is not large enough. A
sensor node will switch to the new program, typically done
through a reboot. A boot loader, which resides in a specific
section of the microcontroller’s program memory, copies the
received program code from EEPROM to the user applica-
tion section of the program memory. Then the new program
starts to execute. However, before switching to the new pro-
gram, the node usually needs to preserve some data and states
(e.g., node ID, group ID, neighbor lists, routing tables, and
calibration parameters), and restores them into the new pro-
gram. The address dependency of these data is an important
factor to design the store and restore mechanisms; for exam-
ple, a routing table from the old program must be restored to
its appropriate address space in the new program.

Management interface: The interface is installed at a base
station (a PC with an attached sensor node) for administrators
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W Figure 1. A WSN reprogramming framework.

to perform reprogramming tasks (initiate/monitor/cancel
reprogramming, setting parameters for scope selection, etc.).

WSN Reprogramming Challenges

In order to develop a practical and efficient reprogramming
system, many challenges have to be addressed, largely due to
the characteristics of WSNs and wireless communications. We
particularly examine TinyOS and Mica Mote in this section, as
they are now popular development environments for WSN
applications.

Characteristics of Wireless Sensor Networks

Unlike reprogramming on other platforms (e.g., PCs), a
reprogramming service for WSNs must run on sensor nodes
with very limited resources.

First, the time and space complexity of algorithms in repro-
gramming should be well fitted to the capacity profile of a
sensor node. Sensor nodes are generally small in size with lim-
ited hardware capacities. For example, Mica2’s ATmegal28L
microcontroller has 8 MIPS throughput at 8§ MHz. Mica2 has
merely 4 kbytes data memory, 128 kbytes program memo-
ry, and 512 kbytes external flash memory (EEPROM) [1].

Second, reprogramming should be energy-efficient.
Sensor nodes are usually battery powered and can hold/
gain limited amounts of energy. Among computing, com-

ty, and so on, which makes reliable protocol designs more

challenging.

Fourth, scalability is crucial for large-scale sensor network
deployment. Scalability has two requirements for a widely
applicable reprogramming service:

* Scale for number of nodes, from tens up to hundreds or
even thousands of nodes

* Scale for varying node density, from sparse to dense net-
works
Fifth, there are several programming support limitations in

current TinyOS:

* A compiled program is monolithic. For efficient execution
on Mote devices, application modules and TinyOS kernels
are statically compiled, globally optimized, and intertwined
into a single executable image. There is no individual mod-
ule that can easily be separated and then reprogrammed
independently.

* There is no reliable dynamic memory allocation. Repro-
gramming services and other applications have to share the
scarce 4 kbytes data memory and 128 kbytes program mem-

ory.

munication, and sensing functions, communication con-
sumes a large portion of the energy, as shown in Table 1
[1]. Writing operation to the EEPROM is also expensive.

Idle listening also consumes energy and should be avoided

as much as possible.
Third, reprogramming requires the program code to be

delivered in its entirety. However, wireless communication
is unreliable due to possible signal collisions, interfer-
ences, and packet contentions. Furthermore, network
topologies may change due to node failures, node mobili-

Read a data block from EEPROM | 1.261
Write a data block to EEPROM 85.449
Send one packet 20.000
Receive one packet 8.000
Idle listen for 1 ms 1.250

B Table 1. Typical power consumption of Mica2 Motes.
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m Encoding/decoding Hierarchy Pipelining
XNP [1] Complete program CSMA Single-hop Whole network No No
Reijers approach [4] Platform-dependent patch CSMA Single-hop Whole network No No
Incremental [5] Platform-independent patch CSMA Single-hop Whole network No No
Trickle [6] Maté script CSMA Multihop Whole network No No
MOAP [7] Complete program CSMA Multihop Whole network No No
Deluge [8] Complete program CSMA Multihop Whole network No Yes
MNP [9] Complete program CSMA Multihop Whole network No Yes
Sprinkler [10] Complete program TDMA Multihop Whole network Yes No
Firecracker [11] Complete program CSMA Multihop Whole network Yes No
Aqueduct [12] Complete program CSMA Multihop Selected nodes No Yes
TinyCubus [13] Modular update CSMA Multihop Selected nodes No No

B Table 2. Available reprogramming systems for WSNs.

¢ File systems and memory management units are currently
unavailable, making safe memory and EEPROM access a
nontrivial task.

* Network supports in current TinyOS release are limited: the
MAC layer uses simple carrier sense multiple access
(CSMA), and there is no reliable transport layer. The
default maximum packet size is relatively small (e.g., less
than 30 bytes as payload). Such small packet size profound-
ly impacts dissemination protocol designs.

* TinyOS supports a limited concurrency model. There is no
multiprocess or multithread concept. Reprogramming
implementation and debugging are also particularly difficult.

Broadcast Storm and Hidden Terminal Problems

A straightforward protocol of code disseminating in WSNs is
classic flooding: a base node broadcasts new codes to its
neighbors. Upon receiving the data, each node stores and
then rebroadcasts to its neighbors. However, in large-scale

WSNs with high density and limited energy, classic flooding is

particularly costly and results in serious redundancy, con-

tention, and collision. It is called the “broadcast storm” prob-
lem [2], and is mainly caused by two deficiencies:

» Data redundancy (implosion [3]): A sender may send out
unnecessary (e.g., already received) data to its neighbors.
To reduce data redundancy, a sender should be aware of
what data has already been received by its receivers.

» Sender redundancy: Some senders are redundant to cover a
desired area. These nodes cannot offer additional coverage
(i.e., nodes that have not been covered by other broadcasts).
The hidden terminal is another issue in wireless communica-

tions. If two nodes are out of the transmission range of each
other (thus “hidden” to each other), when they send packets at
the same time, it may result in packet collisions at any node
located within the intersection area of these senders. The hidden
terminal problem degrades the performance of CSMA MAC
substantially because carrier sensing cannot prevent collisions.

Reprogramming System Designs

In this section we first overview and classify the state-of-the-
art reprogramming systems, then discuss various approaches
that have been used to address the above-mentioned chal-

lenges. Finally, we specify some features of current systems
that have not been widely explored, such as scope selection
and code acquisition.

Overview of Reprogramming Systems

Several reprogramming systems have been designed and stud-
ied in the past few years, as summarized in Table 2. Except
Sprinkler, all of them are designed for Berkeley TinyOS/Mote
platform. These systems can be classified according to several
criteria.

Single-hop vs. multihop: The earliest reprogramming sys-
tems, such as XNP [1], disseminate codes only within the
radio communication range of a base station. To be more
practical, reprogramming systems are now targeted at multi-
hop scenarios. Multihop code dissemination protocols are epi-
demic in nature, and need to address important issues such as
efficiency and scalability.

Encoding: Most reprogramming systems disseminate the
compiled program image across the network. The overhead
is usually large in cases when only minor changes occur
between the new and old versions. Incremental update
approaches compare the difference between the old and
new programs, and only transmits the “delta patch.” Incre-
mental Network Programming [5] uses a differing algorithm
(Rsync) optimized for sensors and assumes no prior knowl-
edge of the program code structure (hardware indepen-
dent). Reijers et al. use semantics of a particular
microcontroller instruction set to repair address shifting,
which makes their approach hardware-dependent [4]. Trick-
le [6] transmits Maté virtual machine scripts instead of
native nesC compiled codes since Maté scripts are much
smaller and simpler to write. However, Maté scripts are lim-
ited to the function of the virtual machine, and are not as
flexible as nesC programming. TinyCubus [13] and SOS [14]
compile an application into several module files, therefore
only affected modules are transmitted in reprogramming.
Appropriate lightweight data compression algorithms could
also be applied to reduce the data size.

MAC: Since CSMA MAC is in the TinyOS release, most
reprogramming systems use CSMA. Sprinkler [10] uses time-
division multiple access (TDMA) MAC to reduce contention
and achieve higher throughput. However, TDMA demands
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careful scheduling of time slots, and its implementation on a
sensor platform is much more complex than CSMA. TDMA is
not currently available for most sensor platforms.

Hierarchy: Sprinkler [10] and Firecracker [11] first send
codes to nodes in the upper layer of the node hierarchy (i.e.,
super nodes). Then super nodes reprogram other nodes in
their local areas. Super nodes can be cluster head nodes, or a
set of connected dominating nodes that are sufficient to cover
the whole network, as in Sprinkler. Super nodes in Firecrack-
er are nodes in each corner, or randomly selected. MNP, Del-
uge, and others all start reprogramming from a single base
station in the network and assume no hierarchy.

Scope: Most reprogramming systems have no scope selec-
tion function and only disseminate one program to the whole
network. Aqueduct [12] and TinyCubus [13] support scope
selection for targeted nodes.

Pipelining: Deluge and MNP support pipelining to acceler-
ate reprogramming in multihop networks (discussed in the
next section), while MOAP uses a sliding window concept.

Segmentation and Pipelining

Several reprogramming protocols take advantage of pipelining
to allow parallel transfers of data in networks, such as Deluge
and MNP. Pipelining is done through segmentation: a pro-
gram is divided into several segments (called pages in Del-
uge), each of which contains a fixed number of packets.
Instead of completely receiving a whole program before for-
warding it, a node becomes a source node after it receives
only one complete segment. For transmission of a large pro-
gram, pipelining could increase overall throughput significant-

ly. Other than pipelining, there is another major benefit of
segmentation: without segmentation, a large program has
thousands of packets. As a consequence, each node needs a
large number of states to record the packet information
(received or not).

Several issues need to be considered for achieving the full
benefit of pipelining. One is to ensure that parallel transfers
should not interfere with each other. In Fig. 2, corresponding
to a simple channel model, a dashed line represents the inter-
ference range, and a solid arrow represents the reliable com-
munication range. Due to the hidden terminal problem, the
simultaneous data transfer from A to B will collide with the
one from C to D. The parallel transfers should take place with
at least three-hop spacing. In a network of n hops, without
pipelining, transferring m segments needs a total time of O(n
* m). With pipelining, the total time is reduced to O(n + 3 *
(m-1)).

One potential issue with implementing pipelining is that the
entire network is powered on to support the pipelining, as
done by Deluge. To address this problem, MNP adopts an
adaptive sleeping scheme. It reduces idle listening time by
putting a node into the sleep state when its neighbors are
transmitting its unneeded data. The sleep duration is carefully
calculated according to the transmission time.

Approaches to Avoid Broadcast Storms and Hidden
Terminals

One of the major differences among various reprogramming

systems is how they address the broadcast storm and hidden

terminal problems. As discussed above, to avoid the broadcast
storm problem, data redundancy and sender redundancy need
to be overcome.

For data redundancy, two major approaches exist: data
aggregation and negotiation. Data aggregation is commonly
used to reduce the elastic sensing data. The negotiation-based
approach, first proposed in SPIN [3], is used in reprogram-
ming. It introduces three-way handshakes between senders
and receivers. A simple negotiation protocol contains three
types of messages:

1 ADV: The source node advertises its received objects pro-
file (meta-data).

2 REQ: Its neighbors send back requests after receiving the
ADYV to notify the source node about which objects are
needed.

3 DATA: The source node only sends out the requested
objects.

Approaches Basic Ideas

Cluster-based [2]

Clusters are formed, and only cluster head nodes are selected to rebroadcast data.

Sprinkler

Counter-based [2]

A counter keeps track of the number of times the same broadcast data has been
received. If a node’s counter is above a threshold, it will not rebroadcast the data.

Trickle Deluge

Negotiation-based [3] segment ID

The priority is given to the sender that is sending a program segment with a smaller

SPIN MNP Deluge

DI FEsREe [2] would rebroadcast the data.

Only the node whose distance to the nearest source node is larger than a threshold

Location-based [2]
threshold.

A node uses location information to estimate the additional area that it could cover if
it would rebroadcast. It will rebroadcast the program if the estimation is larger than a

W Table 3. Approaches for reducing sender redundancy of the broadcast storm problem.
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Popular reprogramming systems (e.g., Deluge and MNP)
use the negotiation approach. Through negotiations, the
source node knows the requested object (a segment in Deluge
and MNP) before sending it out. However, negotiation also
adds delays and introduces control overheads. Therefore, the
negotiation approach has to be designed and implemented in
an efficient and lightweight fashion. We will revisit this prob-
lem in later sections.

Table 3 summarizes several approaches to reducing sender
redundancy. As a cluster-based approach, Sprinkler divides
the whole WSN area into square-shaped clusters, and one
node is selected in each cluster as the cluster head. A con-
nected dominating set (CDS) is calculated from the cluster
head set. The nodes in CDS will be selected to receive and
rebroadcast the data in the first phase in Sprinkler. In the sec-
ond phase data will be transmitted from CDS nodes to all
non-CDS nodes. Compared to the other schemes, the CDS
algorithm is centralized and causes extra overhead.

Trickle uses a counter-based approach called polite gossip.
Trickle breaks the time into intervals, and at a random time
of an interval, a node broadcasts an ADV type message (code
summary). If a node has already heard the same ADVs as its
own k times in this interval, it “politely” stays quiet. When a
node hears an older summary than its own, it broadcasts
DATA packets. The number k bounds the number of adver-
tisements made in a given cell by suppressing other nodes,
which is adjusted according to the density of the network.

Deluge uses the same polite gossip as in Trickle. However,
it adds negotiation (ADV-REQ-DATA) and segmentation on
top of Trickle (Fig. 3a). Polite gossip helps Deluge minimize
the set of senders to advertise in a time interval. Negotiation
further reduces the number of senders by giving higher priori-
ty to a node that transmits a segment with a smaller segment
ID. In MNP negotiation is also used in a similar way for
sender selection (Fig. 3b). Thus, both Deluge and MNP
ensure that nodes receive program segments sequentially.
Sender selection in MNP also uses a request counter: an
advertising node in MNP uses it to keep track of the number
of the requests received from its neighbors after advertising a
segment. An advertising node will be suppressed if it over-
hears others’ ADVs for the same segment with a larger
request count.

TDMA and negotiation are two approaches to overcome
the hidden terminal problem. Sprinkler uses TDMA for
media access control. Transmitting packets is scheduled in

TDMA time slots. The number of TDMA slots affects the
latency of the WSN reprogramming service. However, TDMA
is not widely supported in current WSNs, and, in addition,
using TDMA implies extra network functionality requirements
such as time synchronization.

MNP uses negotiation to suppress hidden terminals. The
source node sends out the ADV twice. The first ADV con-
tains meta data, and the second ADV adds the number of
REQs received after the first ADV. The REQs from the
receivers also include this request counter to suppress hidden
terminals. Assuming that several nodes are advertising concur-
rently, if they overhear REQs destined to other nodes, hidden
terminals that have a smaller number of requestors will be
suppressed.

Reliability Approaches

Program codes should be delivered to the whole network or
target nodes reliably. Most existing reprogramming systems
use a NACK-based approach since it significantly reduces
control traffic, while an ACK-based approach requires an
ACK per packet. Error recovery is limited to a single hop in
all existing systems since the reliability is decreased exponen-
tially as the number of hops increases.

Deluge and MNP uses REQ as negative acknowledgment
(NACK). A REQ packet contains a missing packet bit vector
of the advertising segment. Each bit of the vector corresponds
to a packet in a segment. Sprinkler unicasts requests from the
receiver to get missing packets from source nodes. MOAP has
no concept of segmentation, and it uses a sliding window
approach to keep track of missing packets.

Scope Selection

Most reprogramming systems only disseminate one program
to the whole network. The scope selection function allows
administrators or the network to dynamically select any partic-
ular nodes to be reprogrammed. An efficient protocol with
scope selection should only involve the necessary nodes in for-
warding such that it minimizes power consumption and the
number of affected nodes during reprogramming, and eventu-
ally reprograms all target nodes.

The scope of reprogramming can be as simple as the node
ID, group ID, or as complex as application roles, attribute-
value pairs with operators on these attributes (e.g. reprogram-
ming all vibration sensor nodes, or all nodes with a
temperature reading > 90°F). It is possible that the selection
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criteria can only be evaluated at runtime on each individual
senor node.

One approach is to begin with a meta-data flooding initiat-
ed from the base station. The meta-data carries scope selec-
tion criteria to be evaluated on each sensor node. A simple
shortest path routing tree is then constructed. Only nodes on
the shortest path will act as forwarding nodes in code dissemi-
nation.

Aqueduct [12] establishes “aqueducts” of intermediate
nodes between source nodes and target nodes. Data is only
propagated along these aqueducts. TinyCubus proposes a flex-
ible description language and uses a role concept in scope
selection. It reprograms nodes with a particular role via nodes
in a specific role (e.g., reprogramming all temperature sensors
via vibration sensors). TinyCubus faces a problem because it
cannot guarantee that all target nodes can be reached and
reprogrammed.

Code Acquisition

Code acquisition is initiated by a node that wants its program
to be updated. It tries to get a new program from its peer
nodes or the code repository at the base station. A simplified
solution is outlined as follows: The node sends out a request
containing the object ID. The request is answered by one or
more source nodes with the object. A responding source node
will be selected as the sender of this reprogramming process
based on the received response(s). During the updating pro-
cess, intermediate forwarding nodes can cache the object in its
external storage if possible for future code acquisition
requests.

System Behaviors and Evaluations

Evaluation Metrics

Several metrics are commonly used to evaluate a WSN repro-

gramming system. Among them, reliability, coverage, and

autonomy are essential for the correctness of a reprogram-
ming service; therefore, they are generally satisfied in all sys-

tems listed in Table 2.

* Reliability: Every byte of the program must be correctly
received by targeted nodes.

* Coverage: All nodes selected in scope selection must even-
tually be reprogrammed.

* Autonomy: Reprogramming should be done with minimal
human intervention, and preferably only requires adminis-
trators to work on the base station.

In order to achieve practical uses, performance metrics are
used to compare different reprogramming systems, which
include:

* Completion time: Reprogramming will affect the current
functioning of a WSN since it generates a large amount of
network traffic and demands computation resources. A
carefully designed reprogramming system could keep dis-
ruption to a minimum, especially when only a partial net-
work is reprogrammed. When disruption is inevitable,
reprogramming should be finished as quickly as possible.

* Energy consumption: A minimal amount of energy should
be used in order to lengthen the total network lifetime. In
addition, the energy consumption should be as even as pos-
sible among all the nodes to avoid situations where some
nodes die too fast.

* Memory usage: The program and data memories used by
the reprogramming service should be kept to a minimum.
The systems discussed in this article, to some degree,

assume different usage models and resource trade-offs. It is

very challenging, if not completely impossible, to achieve opti-
mality in all aspects. Trade-offs have to be made to ensure the

primary design goal. Therefore, the design and evaluation
should always keep its application model in mind.

For example, disseminating small Maté scripts could save
more energy than a whole binary code. However, a virtual
machine script imposes interpretation overhead at runtime. If
a program is only going to execute once, the energy savings
from virtual machine encoding will dominate. If it is going to
execute hundreds of thousands of times, the energy cost of
interpretation could dominate.

When a sensor network is deployed for an emergency sce-
nario that does not require long-term operation (e.g., battle-
field intrusion detection, wild fire monitoring), completion
time (interruption) is more important than energy saving.

The complexity of reprogramming is directly related to
memory usage. For example, adding time synchronization or
keeping a neighborhood list could be more efficient in some
systems. However, with no dynamic memory allocation, it gen-
erates a larger executable image after being compiled. It can
be used only if it fits into the memory.

Evaluation Approaches

Real system deployments are desirable to understand system
performances in the real world. However, current test devel-
opments are usually small scale, containing only dozens of
nodes. Simulations are necessary to study large-scale scenar-
ios. TOSSIM is a common simulator to simulate reprogram-
ming systems in TinyOS. TOSSIM simulation uses unmodified
reprogramming system codes, and employs a lossy link model
to capture the unreliable and asymmetric nature of wireless
links. The most commonly used topologies for evaluations are
grid networks.

Dynamic Behaviors

Two typical behaviors of segment propagation in MNP and
Deluge are shown in Fig. 4. Dynamic behaviors (Figs. 4a—d)
[8] can be observed in a network with high density: the seg-
ment propagation along the diagonal is significantly slower
than that along the edges. Propagations along the edge com-
pletely wrap around, which leaves the center area unfilled. A
wavefront type of propagation happens in a less dense net-
work (Figs. 4e-h): propagations along the edges and diagonal
directions are at comparable rates, with irregularities caused
by nonuniform loss rates and contentions. Although not
reported in [9], similar behaviors are also observed in MNP. A
simple explanation is that there are more neighbors, and thus
more contentions, in the center of the network when the node
density of a network is high.

Performance Comparisons

Current reprogramming systems adopt various mechanisms as
described in pervious sections to improve performance met-
rics or trade-off one performance metric for another. We
briefly summarize the impact of several design factors in this
section.

An efficient decoding reduces update size therefore reduces
energy consumption and completion time. Incremental Net-
work Programming [5] reports a speedup factor of 9 over
XNP for small changes in a new program, and 2~2.5 for
changing a few lines.

MAC also affects the performance. Using TDMA, Sprin-
kler is 15 times faster than Deluge using CSMA.

With hierarchy, Firecracker achieves threefold speedup,
using one-third the transmission cost of Trickle.

To reprogram a partial network, scope selection saves ener-
gy over reprogramming the whole network. It shows that in
some experiments Aqueduct saves 50 percent data packet with
6 percent extra control overhead compared to Deluge.
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Pipelining can decrease the completion time dramatically as
observed in Deluge and MNP. Figure 5a simulates the com-
pletion time of Deluge and MNP in two lossless networks.
Due to the spatial pipelining, when the network scales from
100 nodes (a 10x10 network) to 400 nodes (a 20x20 network),
the completion time is significantly faster than without
pipelining.

The negotiation scheme reduces the data redundancy and
sender redundancy thus the data packets transmitted. It saves
energy and decreases completion time. It, however, adds the
control overhead at the same time. Figure Sb shows the com-
parison of data and control packets transmitted in MNP and
Deluge. In a lossless network (Fig. 5b), the number of total
packets sent in both MNP and Deluge are similar. The result
holds when the network scales from 100 to 400 nodes, and
from dense networks (node spacing 10 ft) to sparse networks
(node spacing 40 ft). MNP, however, finishes reprogramming
slower than Deluge, especially when in a dense network. It is

largely due to the more complicated negotiation scheme used
in MNP.

Segmentation can also affect control overhead dramatically.
For a fixed size program, it can be divided into different num-
bers of segments. Figure 6 shows how segmentation can affect
the completion time and number of packets in MNP and Del-
uge. MNP is sensitive to segmentation while Deluge is not in
these simulations. When the number of segments increases,
the number of negotiations increases. However, with a smaller
number of packets in a segment, it is easier for a receiver to
completely receive a segment and then become a source node.
The overall performance is affected by which factor dominates.

Concluding Remarks

Reprogramming is important in facilitating the management
and maintenance of WSNs, as well as enabling adaptive sen-
sor applications. It becomes a crucial service to the success of
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WSNs. Currently WSNs are still in the state of active develop-
ment. In the process of WSN revolution, we will see new
hardware platforms (Mica, Telos), new operating systems
(TinyOS, SOS), and new applications (well controlled bridge
monitoring, randomly deployed wild fire monitoring) keep on
emerging. Reprogramming, at the same time, will continue to
evolve.

There are lots of open problems that need further inves-
tigation to make reprogramming highly usable and effi-
cient. Code dissemination is a continuing focus of current
research. However, design trade-offs and impact factors
have not been fully understood. Approaches to solving the
broadcast storm problem need further study to improve
system performance by reducing control overhead. There
has been little research on scope selection, complete valida-
tion, and code acquisition functions. Design and implemen-
tation of energy-efficient routing and one-to-many
communication protocols for WSN are still evolving. For
practical use, security measures in reprogramming need to
be considered (e.g., DoS attacks and node hijacking). Inter-
operation among heterogeneous network nodes and sys-
tems is also important.

Building adaptive WSN applications through reprogram-
ming is a fantastic area. With reprogramming technology
advances, we envision that WSNs not only can embed intelli-
gence into environments, but also have embedded intelligence
by reprogramming themselves on the fly to dynamic environ-
ments.
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