
An Inter-application and Inter-client Priority-based QoS Proxy Architecture

for Heterogeneous Networks

Qiang Wang, Qing Ye, Liang Cheng

Laboratory Of Networking Group (LONGLAB, http://long.cse.lehigh.edu)

Department of Computer Science and Engineering, Lehigh University, Bethlehem, PA, USA

qiw3@lehigh.edu, qiy3@lehigh.edu, cheng@cse.lehigh.edu

Abstract

Most QoS (Quality of Service) adaptation systems

in a heterogeneous network environment require

source-code modifications in order to implement

adaptation mechanisms, and network QoS parameters

(e.g. bandwidth, latency, and jitter) are major sources

for adaptation. This paper proposes a three-tier QoS

proxy architecture where legacy applications can be

transparently integrated without source-code

modifications. The other salient feature of the

architecture is its comprehensive coverage of QoS

parameters for adaptation, including network QoS

parameters such as bandwidth, latency and jitter,

system QoS parameters such as CPU load and battery

power status, and user profiles and QoS preferences.

An end-user may assign different priorities to different

applications through graphical user interfaces to best

fit their QoS requirements. Packets from a client

application are differentiated at the proxy, which

integrates the inter-application and inter-client

priority policies using priority fair queues.

1. Introduction

Heterogeneity is an important characteristic of

computing environments nowadays. A heterogeneous

computing environment consists of a number of

dissimilar hardware and software elements, e.g.

different network connections, devices, and services.

For example, in a university campus, the network

connections may comprise of wired and wireless ones,

which may include: slow dial-ups from student dorms

and high-speed links from computer labs. The

physical computing devices may encompass a mix of

personal computers, handhelds, smart appliances, and

even tiny sensors; and applications having different

quality of service (QoS) requirements may include

bandwidth-demanding P2P file sharing, computation-

intensive scientific simulation, real-time multimedia

streaming, etc. To provide ideal service quality for all

users and applications in such an environment,

heterogeneity needs to be comprehensively addressed

and QoS infrastructure be carefully designed. How to

address the QoS issues in the context of the

heterogeneous environments becomes a challenge.

Several approaches have been researched and

implemented to meet this challenge, including various

designs of system architectures, service protocols, and

control algorithms. One approach is resource

reservation. In a reservation-based system (e.g. an

ATM network), the system will dedicate necessary

resources to an application to meet the QoS

requirement. However, a reservation-based system

needs network infrastructure supports. Adaptation

approach, in contrast to the reservation approach,

generally occurs at the application level and offers

more controllable application-specific adaptation

choices. An adaptive application does not require a

tight integration or modification of the best-effort

service provided by the traditional networks and

operating systems’ protocol stacks. However, adding

either adaptation or resource-reservation functionality

to an application generally needs source code

modification, which is not accessible for an enormous

number of legacy commercial programs in usage. In

our research, we propose a proxy-based architecture to

provide the QoS support, which is transparent to

existing applications.

Proxies have become more and more prevalent in

recent years in corporate and academic networks.

Proxies are used to process data flowing between two

end hosts as an intermediary. For clients, a proxy acts

as their servers; while for servers, a proxy is a special

client, which intermediates data communication for

clients. Proxies are generally used to provide efficient

use of network resources, reduced cost, and increased

Proceedings of the 10th IEEE Symposium on Computers and Communications (ISCC 2005)

1530-1346/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 24, 2009 at 22:12 from IEEE Xplore. Restrictions apply.

security. There are research efforts on QoS proxy to

support multimedia services [13] and communications

across wireless links [14]. However, legacy

applications need source-code modifications to be

compatible to the QoS architecture proposed in [13]

considering its unified component-based programming

environment. Only wireless link bandwidth and user

profile and feedback are considered by the QoS

management architecture proposed in [14]. In this

research, we extend the environment-awareness

capability of the QoS proxy to user/application QoS

parameters, system QoS parameters, and network QoS

parameters. Moreover, the QoS-support architecture

proposed here helps applications be transparently

deployed in a heterogeneous network environment

without the need of source-code modifications and be

adaptive to the possible variations of networks,

systems, and end users’ preferences. Next section

discusses related work and Section 3 presents our QoS

proxy architecture. Section 4 concludes this paper.

2. Related Work

Bolliger and Gross [4] have proposed the concept

of network-aware as the ability of applications to

adjust their resource demands in response to the

network performance variations. Network

characteristics such as bandwidth, latency, and jitter

are QoS parameters for the adaptation. Application-

aware concept is defined as a collaborative partnership

between the operating systems and applications to

offer a general and effective approach to network

information access. The concept of context-aware in

[5] is similar to that of environment-aware proposed in

[6]. Both are confined to the awareness of changes

between end hosts and network environments.

There exist research of QoS-aware architecture in

a middleware design of multimedia network

applications [7][9][13]. In this paper, the concepts

mentioned above are extended to QoS-aware, which is

defined as the system’s ability to deal with and adapt

to the changes of the user-defined QoS profiles, end-

host resource availability, and communication

network characteristics. The ultimate goal of QoS-

aware architecture is to achieve the best possible

service quality specified by users and the most

efficient resource utilization constrained by system

features.

Table 1 compares several QoS adaptation

architectures that exemplify existing work. Our

research is unique in two aspects. One is that our QA-

Proxy (QoS Adaptation Proxy) based architecture

enables a transparent integration with legacy

applications without the requirement of source code

modification. The other is its comprehensive coverage

of QoS parameters for adaptation. Existing QoS

architectures focus on part(s) of network QoS

parameters such as bandwidth, latency and jitter,

system QoS parameters such as CPU load and battery

power status, and/or user profiles. We consider the

user’s QoS parameters by letting users select the

priority of a program that suits their QoS needs. The

network dynamics and devices characteristics are

considered in our architecture as well.

Table 1. Network QoS adaptation architectures

System
Adapt-
ations

at

Sources for
adaptations
(QoS data)

C
o

d
e ch

an
g

e?

Control algorithm for
adaptation

Odyssey
[10]

Client
side

Bandwidth,
latency,
battery
power, CPU
utility,
memory size

Yes Each type of QoS data
has a specific warden
that is in charge of
retrieving data fidelity
in response to the
variation of system
resources

Chariot
[4]

Server
side

Bandwidth Yes Forming a close-loop
control based on the
difference between time
needed to deliver a
response with actual
time left to deliver it

ACAN
[5]

Server
and
client
side

Bandwidth Yes Using mobile agents to
detect and transmit
network information and
perform adaptation

Network
Weather
Service
[11]

Server
side

Bandwidth,
CPU usage,
latency,
memory size

Yes Detecting the current
resource usage of the
system and forecasting
the future dynamic
variation to help clients
choose an appropriate
server

Agilos
[8]

Middle-
ware
located
at
server
and
client
sides

Bandwidth Yes Using resource observer
and adaptor to form a
close-loop control. An
adaptor controls
applications to choose
an appropriate form of
components to adapt to
the environment.

Our
QA-
Proxy
System

Proxy
based

Network,
system, and
user
preference
awareness

No Calculating the packet
priority based on the
application priority
assigned by users and
the client’s priority
assigned based on the
client’s profile.

Proceedings of the 10th IEEE Symposium on Computers and Communications (ISCC 2005)

1530-1346/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 24, 2009 at 22:12 from IEEE Xplore. Restrictions apply.

3. QoS-aware Architecture

The usage scenarios of our architecture are within

networks where the client/proxy/server access model

is prevalent. For instance, shown in Fig. 1, each

client’s traffic goes through a QA-Proxy to access the

Internet; the traffic flows from the Internet are

dominated by HTTP, multimedia, and FTP data, etc;

and the traffic inside the intranet is generally for

accessing of file repositories, web servers, and

database servers. We construct a three-tier QoS

architecture where the QoS-Adaptation Proxy (QA-

Proxy) implements adaptation mechanisms, which

should otherwise be done by client-side applications.

In other word, the QA-Proxy takes the responsibility

of the adaptation and the client applications remain the

same without source code modifications. Clients send

data to QA-Proxy, which will forward the requests to

destination servers based on QoS mechanisms

explained in later subsections. Server responses are

cached first in the proxy and then be sent back to an

originating client by the proxy, also with QoS

mechanisms performed during the process.

Intranet

client client client clientMobile client

Data

Server

Data

Server

Internet

QA ProxyQA Proxy

Intranet

Figure 1. An example of a usage scenario of the QoS

Adaptation Proxy (QA-Proxy) architecture

App 1

App 2

App n

Program Priority

Assignment (GUI)

Priority

manager

Awareness

Measurement

Traffic Distributor

Priority Queues

Network traffic

Client

Awareness Program priority information

Client

QoS-Proxy

User

Awareness

Server

User profiles

Figure 2. Major components of the QoS architecture

Fig. 2 illustrates individual components in the

QoS architecture. At each client, there are two major

components: Awareness Measurement Module and

Program Priority Assignment Interface. Both of them

are used to acquire the QoS data of the client:

awareness measurement tools use active probing

approach to collect network and device information,

e.g. available bandwidth to the proxy and battery

consumption at wireless devices. The Program Priority

Assignment Interface is a graphic user interface,

through which a user is able to specify the relative

priority of specific programs. The following

subsections will describe each component in details.

3.1. Network and System QoS Specification

QoS specification at end hosts is to retrieve end-

system QoS data and user-preference QoS data. By

collaborating with the operation system (OS),

awareness measurement tools collect end-system QoS

data (e.g., CPU load and memory usage) by invoking

system APIs and integrating with existing tools. For

example, existing tools like vmstat and uptime [11]

probe real-time workload of CPU and available

memory under a Linux OS.

Getting accurate network condition information is

essential to the network adaptation in general and to

our QoS architecture in specific. Our network

measurement tools have been reported in [1] [2] and

[12] and detailed explanations of the theoretical and

practical issues about these tools are beyond the scope

of this paper. In short, [2] provides an accurate end-to-

end network capacity detection method, [1] uses fuzzy

reasoning to check whether there exists a wireless link

in an end-to-end network path, and [12] presents a

new accurate available bandwidth measurement tool

based on a fisheye pattern of probing packets.

Using this set of tools, network connection types,

link capacity, available bandwidth, jitter, and latency

are measured and collected. These pieces of network

awareness and system awareness information are then

sent to the Priority Manager module inside the proxy,

and create a user profile database, as shown in Fig. 2.

It should be noticed that comparing to the pre-

configured static user profile in other systems, the user

profile data in our architecture is dynamically

generated and continuously updated from the client to

reflect the current conditions of the network and end

system environment.

3.2. Application Priority QoS Specification

Priority is a basic concept for process scheduling

in operating systems, where a process with higher

Proceedings of the 10th IEEE Symposium on Computers and Communications (ISCC 2005)

1530-1346/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 24, 2009 at 22:12 from IEEE Xplore. Restrictions apply.

priority is scheduled more frequently and systems can

dedicate more resources to this process. Here we

extend this concept to specify different application

QoS priorities. Consider that a user runs a

downloading program and another online video

streaming application at the same time on the same

device. When a user assigns a higher priority to the

video streaming application and a lower priority to the

downloading application, the QoS of the video

streaming application should be better preserved. The

value of priorities represents the user QoS data, that is,

the higher the priority value, the better application

performance is expected by the end user. In this way,

users can present the relative importance levels of

applications and try to control (to some extend) the

behavior of them via the QoS architecture.

The Program Priority Assignment program

provides a simple way for an end-user to input the

application priority through a graphic user interface

(GUI). The GUI is flexible enough to let an end user

specify the priority of a type of application (e.g.

assigning the same priority to multiple instances of the

Internet Explorers), priority of a type of network

protocol (e.g. assigning the same priority to all

applications that use the HTTP service), or distinct

priority for each individual program. The system takes

a default value for programs that do not have a priority

value assigned by the user.

To relate an outbound network packet to its

application, a few system APIs are used. EnumProc

API enumerates current running process and reports

their application process IDs. The lsof [8] is a tool that

can list open files. Under Unix-type systems, an open

file may be a stream or a network file (Internet socket,

NFS file or UNIX domain socket). Through lsof, the

OS knows whether a process has a socket open on a

specified IP address/port or not.

In the current design, integer numbers (1 to 10)

are used to indicate the priority. Since some users may

assign all of his/her running applications to the highest

priority, hoping that the proxy could provide more

resources (e.g. computing, bandwidth etc) to this

client. In order to be fair among multiple clients, each

client has a maximum sum value of the priorities.

3.3. Inter-Application and Inter-client QoS

Adaptation

Under the constraint of the QA-Proxy’s resources,

the essence of QoS is to provide the capability to

differentiate between traffic or service types such that

one or more classes of traffic or services can be

treated differently than others [3]. Proxy-side QoS

adaptation is performed by collaborations of Priority

Manager, Traffic Distributor and Priority Queues, as

shown in Fig. 2. After getting all these application

priorities and client properties, Priority Manger

decides the inter-application and inter-client (IAIC)

priority of each packet from each client, and puts the

incoming packet (i.e. outbound traffic) into a priority

queue based on the IAIC priority calculation.

The information of clients provided by the

Program Priority Assignment program includes

running application priorities, application process IDs,

and source/destination IP addresses and port numbers

of the application. QA-Proxy assigns a unique ID for

each application with its IP and network port. In case

that a single application opens multiple network

connections, multiple ports are assigned to the

application and the QA-Proxy treats this application as

multiple ones by assigning multiple IDs.

The priority of a client application running at a

certain host, denoted here as H_Pi, is determined by

multiple factors, such as the current network

bandwidth, the mobility of the client, and the current

host device capability, which are acquired by the

Awareness Measurement tools located at each client.

Then the inter-application and inter-client priority for

each packet can be formulated as following:

)
i

)*(H_P
ij

(O_P
ij

P
21

where 1 and 2 are factors that put different weights

to the inter-application and inter-client priority, Pij

represents an inter-application and inter-client priority

value of the packet from the jth application running at

the ith client, and O_Pij represents the original priority

value of the packet from the jth application running at

the ith client. It is specified by the end user and sent

from the client to the Priority Manger at the proxy.

In some situations that network administrators

need more flexibility over the formulation or when the

new inter-application and inter-client priority cannot

be calculated, a priority look-up table can be used.

Bandwidth, mobility, program priority, application

throughput are inputs, and the inter-application and

inter-client priority is the output (see Table 2). For

example, a wireless client gets a higher priority than a

wired client if other conditions are the same.

Table 2: An example priority look-up table

IAIC
priority

Mobility
Bandwidth

(bps)
Program
Priority

Application
Throughput

8 Wired 100M 10 10K bps

9 Wired 10M 10 10K bps

7 Wired 54K 8 1K bps

9 Wireless 10-19.2 K 8 10K bps

Proceedings of the 10th IEEE Symposium on Computers and Communications (ISCC 2005)

1530-1346/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 24, 2009 at 22:12 from IEEE Xplore. Restrictions apply.

3.4. Priority Queues

The QA-Proxy receives outbound network traffic

from its clients inside the intranet. A Traffic

Distributor dispatches the outbound packets to one of

the first-in-first-out (FIFO) queues. The number of

queues is the same as the number of priorities in the

system, e.g. 10. The Traffic Distributor extracts the

source IP address and the port number from the

packet, therefore it knows the process ID from which

the packet is originated. And then it calculates or

looks up the inter-application and inter-client priority

(IAICP) of the packet, and dispatches the packet to the

corresponding priority queue based on the IAICP.

This process has been depicted as Fig. 3.

There are a fixed number of system threads in the

Thread Pool. Each queue gets assigned a number of

threads, calculated by the algorithm below, to process

the data. Since all threads are scheduled by the OS

evenly, the more threads for a queue the faster the

queued data are processed. It is natural to conceive

that more threads will be assigned to the highest

priority queue. However, the thread assignment

method is not purely driven by priority. It also takes

into consideration the size of the total packets that

have been stored in one queue. The thread assignment

algorithm is formulated as follows:

NUMTHREADMAX
i

T __
k

k

T

L

T

L

T

L

T

L
....

3

3

2

2

1

1

If Li=0 then Ti=0, and Li is the average data length

stored in the ith queue during the recent period of time,

e.g. 30 seconds; Ti is the number of threads assigned

to ith queue; k is the number of priorities in the system;

and MAX_THREAD_NUM is the total number of

threads used to process the priority queues. By

satisfying the above conditions, a balance is

established between the priority and the timeliness of

processing the stored packets.

T
ra

ffic
 d

is
trib

u
to

r

Bandwidth

N kbps

Token

Bucket

Size N

Thread M

FIFO Queue K

FIFO Queue 1

FIFO Queue 2

FIFO Queue 3

Thread1,2,3

From

Client 1

From

Client 2

From

Clients M tokens

QA-Proxy

Thread pool

Figure 3: QA-Proxy components – sending outbound

packets from clients to servers

The starvation problem is avoided by assigning at

least one thread to each queue that is not empty. Since

all threads are scheduled evenly, the lower priority

queue is processed slower, but not suspended, if any

data is in the queue. Until a priority queue is empty,

all threads serving the queue will not be released.

The number of threads assigned to each queue

depends on two factors: the priority of the queue and

the amount of queued data. Lager number of threads

associated with higher priority queues helps to empty

the queues faster, if their queued data amounts are

same. Dynamically reallocating more threads to a

queue with growing amount of queued data helps to

empty these queues more quickly, therefore it ensures

that the service will be offered swiftly, without

significantly affect TCP timeout mechanism. FIFO

rule is used for each queue in order to preserve the

original packet sequence from the application.

The dynamic assignment of the threads to the

queues maximizes the global utility of the bandwidth

from the QA-Proxy to the Internet. In fact, token

bucket control mechanism [3] is used for each thread

to maximize the utility and avoid congestions as well.

The proxy puts tokens into the bucket in a consistent

rate. The bucket can hold a maximum fixed number

(N) of tokens, which correspond to the network

interface bandwidth (N Kbps). The number of tokens

that each thread can retrieve from the bucket is

N/MAX_THREAD_NUM. If there is no token inside

the bucket, the thread must wait.

Based on these rules, the QA-Proxy assigns more

resources to applications with higher inter-application

and inter-client priority values. Since all active threads

share the bandwidth from QA-Proxy to the Internet,

such applications will be served with more chances of

getting data processed comparing to other applications

with lower priorities. By balancing the resource

distribution between high priority applications and

low priority ones, the system performance expected by

the users can be offered accordingly. Programs could

be integrated in this QoS architecture transparently

without source-code modifications.

Moreover, the resource availability such as the

network bandwidth may change from time to time.

Due of its position, the QA-Proxy is able to obtain the

information of the available bandwidth between itself

and data servers and the available bandwidth from

itself to the end hosts. Data servers are servers in the

intranet shown in Fig. 1, where different fidelities of

the same data are stored. By adding a byte of

additional information in the header of data requests,

QA-Proxy could ask the data servers to adjust the data

fidelity for adaptation to the variation of network

conditions between them. In the same way, it could

Proceedings of the 10th IEEE Symposium on Computers and Communications (ISCC 2005)

1530-1346/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 24, 2009 at 22:12 from IEEE Xplore. Restrictions apply.

change the amount of information in transmission by

adding or discarding some contents of the packets to

the client. The idea of making a tradeoff between data

fidelities and the performance of data transmission has

been studied in [4][10]. The proxy components when

proxy sends inbound packets from servers back to

clients are shown in Fig. 4. The architecture is similar

to what has been shown in Fig. 3, except that there is

one priority-queue array to each client. The token

bucket is again used to control the network usage from

the QA-Proxy to the individual client.

A
p

p
lic

a
tio

n
 T

ra
ffic

 d
is

trib
u

to
r

Bandwidth

N kbps

To client 1

QA-Proxy

Bandwidth

N1 kbps

Thread pool

To client 2

To client m

Bandwidth

N2 kbps

Bandwidth

Nm kbps

Token

Bucket

Size N2

Token

Bucket

Size N1

… …

FIFO Queue 1

FIFO Queue 2

FIFO Queue k

Thread pool

… …

FIFO Queue 1

FIFO Queue 2

FIFO Queue k

…………… …..

P
rio

rity
 T

ra
ffic

 d
is

trib
u
to

r
P

rio
rity

 T
ra

ffic
 d

is
trib

u
to

r

Figure 4. QA-Proxy components – sending inbound

packets from servers to clients

4. Conclusions and Future Work

Most existing QoS-aware architectures and

systems in heterogeneous network environments

require applications to modify their source code to

implement network-adaptation functionality. In this

paper, we introduce a proxy-based QoS-aware

architecture where legacy applications can be

integrated transparently to adapt to the variation of

system resource conditions, network variations, and

user preferences by implementing QoS adaptation

policies in a QoS-aware proxy in a three-tier client-

server paradigm.

In order to provide the fairness among end users

and applications, policies that drive inter-application

and inter-client priority assignment should be fully

adjustable considering different usage scenarios.

Although we can use the priority look-up table in

cases when the policies are too complex to be

generated, we are still working on approaches to

specifying the priorities more elegantly. The

evaluation of the performance degradation in terms of

packet latency due to the QA-Proxy is also expected.

Moreover, a feedback such as a notification or

recommendation of a good priority is necessary for

applications that perform poorly because of a low

priority value assigned. Finally we plan to deploy and

test the proxy architecture in an educational setting.

This work is sponsored by National Science

Foundation (NSF Award #0438300).

5. References

[1] L. Cheng and I. Marsic, Fuzzy Reasoning for Wireless

Awareness, International Journal of Wireless Information

Networks, Vol. 8, No. 1, pp. 15-26, 2001.

[2] L. Cheng and I. Marsic, Piecewise network awareness

service for wireless/mobile pervasive computing, Mobile

Networks and Applications, , 7(4) pp. 269-278, 2002.

[3] P. Ferguson and G. Huston, Quality of Service:

Delivering QoS on the Internet and in Corporate Networks,

John Wiely & Sons, 1998.

[4] J. Bolliger and T. Gross, A framework-based approach to

the development of network-aware applications, IEEE

Transactions on Software Engineering, Vol. 24, No. 5, pp.

376-390, May 1998.

[5] M. Khedr and A. Karmouch, ACAN - ad hoc context

aware network, CCECE'02, Winnipeg, Canada, May 2002.

[6] G. Welling and B.R. Badrinath, An architecture for

exporting environment awareness to mobile computing

applications, IEEE Transactions on Software Engineering,

Vol. 24, No. 5, pp. 391-400, May 1998.

[7] K. Nahrstedt, D. Xu, D. Wichadakul, and B. Li, QoS-

aware middleware for ubiquitous and heterogeneous

environments, IEEE Communications Magazine, Vol. 39,

Issue 11, pp. 140-148, November 2001.

[8] lsof tool: online at http://www.cert.org/security-

improvement/implementations/i042.05.html

[9] B. Li, D. Xu, and K. Nahrstedt, An integrated runtime

QoS-aware middleware framework for distributed

multimedia applications, Multimedia Systems, Vol. 8, pp.

420–430, 2002.

[10] B.D. Noble and M. Satyanarayanan, Experience with

adaptive mobile applications in Odyssey, Mobile Networks

and Applications, Vol. 4, 1999.

[11] R. Wolski, N.T. Spring, J. Hayes, The network weather

service: a distributed resource performance forcasting

service for metacomputing, Journal of Future Generation

Computing Systems, 15(5-6), pp. 757-768, Oct. 1999.

[12] Q. Wang and L. Cheng, FEAT: improving accuracy in

end-to-end available bandwidth estimation, submitted to

Passive and Active Measurement, 2005.

[13] X. Gu, D. Wichadakul, and K. Nahrstedt, Visual QoS

programming environment for ubiquitous multimedia

services, in Proc. of IEEE International Conference on

Multimedia and Expo 2001, Tokyo, Japan, August 2001.

[14] D. Hoang, D. Reschke, W. Horn, Adaptive quality of

service management using QoS proxy and user feedback for

wireless links, in Proceedings of the International Workshop

on Innovative Internet Computing Systems (IICS 2001), pp.

31- 40, Ilmenau, Germany, June 2001.

Proceedings of the 10th IEEE Symposium on Computers and Communications (ISCC 2005)

1530-1346/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 24, 2009 at 22:12 from IEEE Xplore. Restrictions apply.

